Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst

被引:88
作者
Liu, Ning [1 ]
Schneider, Christopher [1 ]
Freitag, Detlef [2 ]
Venkatesan, Umamaheswari [3 ]
Marthala, V. R. Reddy [3 ]
Hartmann, Martin [3 ]
Winter, Benjamin [4 ]
Spiecker, Erdmann [4 ]
Osvet, Andres [5 ]
Zolnhofer, Eva M. [6 ]
Meyer, Karsten [6 ]
Nakajima, Tomohiko [7 ]
Zhou, Xuemei [1 ]
Schmuki, Patrik [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Mat Sci WW 4, LKO, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Chair Separat Sci & Technol, High Pressure Lab, D-91058 Erlangen, Germany
[3] Univ Erlangen Nurnberg, ECRC, D-91058 Erlangen, Germany
[4] Univ Erlangen Nurnberg, Ctr Nanoanal & Electron Microscopy CENEM, D-91058 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Dept Mat Sci 6, iMEET, D-91058 Erlangen, Germany
[6] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
[7] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
关键词
co-catalyst; hydrogenation; titanium(III); TiO2; water splitting; TIO2 NANOTUBE ARRAYS; TITANIUM-DIOXIDE; VISIBLE-LIGHT; H-1-NMR SPECTROSCOPY; NANOWIRE ARRAYS; THIN-FILMS; WATER; PHOTOLUMINESCENCE; NANOCRYSTALS; TI3+;
D O I
10.1002/anie.201408493
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high-pressure hydrogenation of commercially available anatase or anatase/rutile TiO2 powder can create a photocatalyst for H-2 evolution that is highly effective and stable without the need for any additional co-catalyst. This activation effect cannot be observed for rutile; however, for anatase/rutile mixtures, a strong synergistic effect can be found (similar to results commonly observed for noble-metal-decorated TiO2). EPR and PL measurements indicated the intrinsic co-catalytic activation of anatase TiO2 to be due to specific defect centers formed during hydrogenation. These active centers can be observed specifically for high-pressure hydrogenation; other common reduction treatments do not result in this effect.
引用
收藏
页码:14201 / 14205
页数:5
相关论文
共 42 条
[1]  
Abbaschian R, 2009, Cengage Learning
[2]   The advancements in sol-gel method of doped-TiO2 photocatalysts [J].
Akpan, U. G. ;
Hameed, B. H. .
APPLIED CATALYSIS A-GENERAL, 2010, 375 (01) :1-11
[3]   The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J].
Anpo, M ;
Takeuchi, M .
JOURNAL OF CATALYSIS, 2003, 216 (1-2) :505-516
[4]   Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation [J].
Chen, Xiaobo ;
Liu, Lei ;
Liu, Zhi ;
Marcus, Matthew A. ;
Wang, Wei-Cheng ;
Oyler, Nathan A. ;
Grass, Michael E. ;
Mao, Baohua ;
Glans, Per-Anders ;
Yu, Peter Y. ;
Guo, Jinghua ;
Mao, Samuel S. .
SCIENTIFIC REPORTS, 2013, 3
[5]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[6]  
Connelly K, 2012, MATER RENEW SUSTAIN, V1, DOI 10.1007/s40243-012-0003-9
[7]  
Cotterill R. M. J., 1966, NATURE SMALL DEFECT, VR5269
[8]   H-1 NMR spectroscopy of titania - Chemical shift assignments for hydroxy groups in crystalline and amorphous forms of TiO2 [J].
Crocker, M ;
Herold, RHM ;
Wilson, AE ;
Mackay, M ;
Emeis, CA ;
Hoogendoorn, AM .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (15) :2791-2798
[9]   Theoretical Studies on Anatase and Less Common TiO2 Phases: Bulk, Surfaces, and Nanomaterials [J].
De Angelis, Filippo ;
Di Valentin, Cristiana ;
Fantacci, Simona ;
Vittadini, Andrea ;
Selloni, Annabella .
CHEMICAL REVIEWS, 2014, 114 (19) :9708-9753
[10]   Distribution of Ti3+ Surface Sites in Reduced TiO2 [J].
Deskins, N. Aaron ;
Rousseau, Roger ;
Dupuis, Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (15) :7562-7572