ON NEW BEZIER BASES WITH SCHURER POLYNOMIALS AND CORRESPONDING RESULTS IN APPROXIMATION THEORY

被引:53
作者
Ozger, Faruk [1 ]
机构
[1] Izmir Katip Celebi Univ, Dept Engn Sci, TR-35620 Izmir, Turkey
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2020年 / 69卷 / 01期
关键词
Bezier bases; shape parameter; lambda-Schurer operators; weighted A-statistical convergence; OPERATORS; (P; CONVERGENCE;
D O I
10.31801/cfsuasmas.510382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new type Bezier bases with lambda shape parameters have been defined [30, Ye et al., 2010]. We slightly modify these bases to establish new Bezier bases with Schurer polynomials and lambda shape parameters. We construct a new type Schurer operators via defined new Bezier-Schurer bases. Also, we study statistical convergence properties of these operators and obtain an estimate for the rate of weighted A-statistical convergence. Moreover, we prove two Voronovskaja-type theorems including a Voronovskaja-type approximation theorem using weighted A-statistical convergence.
引用
收藏
页码:376 / 393
页数:18
相关论文
共 32 条
[21]   Weighted Statistical Approximation Properties of Univariate and Bivariate λ-Kantorovich Operators [J].
Ozger, Faruk .
FILOMAT, 2019, 33 (11) :3473-3486
[22]  
Peetre J., 1963, Notas Mat Rio de Janeiro, V39, P1
[23]  
Pop O. T., 2010, CREATIVE MATH INF, V19, P191
[24]   Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots [J].
Rahman, Shagufta ;
Mursaleen, Mohammad ;
Acu, Ana Maria .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) :4042-4053
[25]   Bivariate-Schurer-Stancu Operators Based on (p,q)-Integers [J].
Rao, Nadeem ;
Wafi, Abdul .
FILOMAT, 2018, 32 (04) :1251-1258
[26]  
Schurer F., 1962, Math. Inst. Techn. Univ. Delft Report
[27]  
Sever Y., 2018, IRAN J SCI TECHNOL A, V42, P1
[28]  
Steinhaus H, 1951, C MATH, V2, P73, DOI DOI 10.4064/CM-2-2-98-108
[29]   On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus [J].
Winkel, Rudolf .
COMPUTER AIDED GEOMETRIC DESIGN, 2014, 31 (05) :227-244
[30]  
YILDIZ S., 2018, SAKARYA U J SCI, V22, P1743