Niobium as Alternative Material for Refractory and Active Plasmonics

被引:30
作者
Bagheri, Shahin [1 ,2 ]
Strohfeldt, Nikolai [1 ,2 ]
Ubl, Monika [1 ,2 ]
Berrier, Audrey [2 ,3 ]
Merker, Michael [4 ]
Richter, Gunther [5 ]
Siegel, Michael [4 ]
Giessen, Harald [1 ,2 ]
机构
[1] Univ Stuttgart, Phys Inst 4, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Res Ctr SCoPE, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Phys Inst 1, D-70569 Stuttgart, Germany
[4] Karlsruhe Inst Technol, Inst Micro & Nanoelect Syst, Karlsruhe, Germany
[5] Max Planck Inst Intelligent Syst, D-70589 Stuttgart, Germany
关键词
refractory plasmonics; niobium nanoantennas; hydrogen; active plasmonics; thermal stability; LASER INTERFERENCE LITHOGRAPHY; TITANIUM NITRIDE; NANOANTENNA ARRAYS; PERFECT ABSORBER; HYDROGEN SYSTEM; GOLD NANORODS; BULLS EYES; FABRICATION; SILVER; RANGE;
D O I
10.1021/acsphotonics.8b00530
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of stable compounds for durable optics is crucial for the future of plasmonic applications. Even though niobium is mainly known as a superconducting material, it can qualify as an alternative material for high-temperature and active plasmonic applications. We utilize electron beam lithography combined with plasma etching techniques to fabricate nanoantenna arrays of niobium. Tailoring the niobium antenna geometry enables precise tuning of the plasmon resonances from the near-to the mid-infrared spectral range. Additionally, the hydrogen absorptivity as well as the high-temperature stability of the antennas have been investigated. Further advantages of niobium such as superconductivity make niobium highly attractive for a multitude of plasmonic devices ranging from active and refractory perfect absorbers/emitters to plasmon-based single photon detectors.
引用
收藏
页码:3298 / 3304
页数:13
相关论文
共 67 条
[1]   High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy [J].
Aksu, Serap ;
Yanik, Ahmet A. ;
Adato, Ronen ;
Artar, Alp ;
Huang, Min ;
Altug, Hatice .
NANO LETTERS, 2010, 10 (07) :2511-2518
[2]   Comprehensive Study of Plasmonic Materials in the Visible and Near Infrared: Linear, Refractory, and Nonlinear Optical Properties [J].
Albrecht, Gelon ;
Ubl, Monika ;
Kaiser, Stefan ;
Giessen, Harald ;
Hentschel, Mario .
ACS PHOTONICS, 2018, 5 (03) :1058-1067
[3]   Refractory Plasmonics without Refractory Materials [J].
Albrecht, Gelon ;
Kaiser, Stefan ;
Giessen, Harald ;
Hentschel, Mario .
NANO LETTERS, 2017, 17 (10) :6402-6408
[4]   REACTIONS IN THE NIOBIUM-HYDROGEN SYSTEM [J].
ALBRECHT, WM ;
GOODE, WD ;
MALLETT, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1959, 106 (11) :981-986
[5]  
[Anonymous], 2003, HDB INORGANIC CHEM
[6]  
[Anonymous], 2014, HBK SURF SCI
[7]  
Aouani H, 2014, NAT NANOTECHNOL, V9, P290, DOI [10.1038/NNANO.2014.27, 10.1038/nnano.2014.27]
[8]   Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification [J].
Arpin, Kevin A. ;
Losego, Mark D. ;
Cloud, Andrew N. ;
Ning, Hailong ;
Mallek, Justin ;
Sergeant, Nicholas P. ;
Zhu, Linxiao ;
Yu, Zongfu ;
Kalanyan, Berc ;
Parsons, Gregory N. ;
Girolami, Gregory S. ;
Abelson, John R. ;
Fan, Shanhui ;
Braun, Paul V. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability [J].
Arpin, Kevin A. ;
Losego, Mark D. ;
Braun, Paul V. .
CHEMISTRY OF MATERIALS, 2011, 23 (21) :4783-4788
[10]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]