Photovoltaics-Driven Power Production Can Support Human Exploration on Mars

被引:8
作者
Abel, Anthony J. [1 ,2 ]
Berliner, Aaron J. [1 ,3 ]
Mirkovic, Mia [1 ,4 ]
Collins, William D. [5 ,6 ]
Arkin, Adam P. [1 ,3 ,7 ]
Clark, Douglas S. [1 ,2 ,8 ]
机构
[1] Ctr Utilizat Biol Engn Space CUBES, Berkeley, CA USA
[2] Univ Calif, Dept Chem & Biomol Engn, Berkeley, CA USA
[3] Univ Calif, Dept Bioengn, Berkeley, CA USA
[4] Univ Calif, Dept Elect Engn & Comp Sci, Berkeley, CA USA
[5] Climate & Ecosyst Sci Div, Lawrence Berkeley Natl Lab, Berkeley, CA USA
[6] Univ Calif, Dept Earth & Planetary Sci, Berkeley, CA USA
[7] Environm Genom & Syst Biol Div, Lawrence Berkeley Natl Lab, Berkeley, CA USA
[8] Mol Biophys & Integrated Bioimaging Div, Lawrence Berkeley Natl Lab, Berkeley, CA USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
photovoltaics; technoeconomic analysis; human exploration mission; mars; radiative transfer; climate model; WATER; EFFICIENCY;
D O I
10.3389/fspas.2022.868519
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A central question surrounding possible human exploration of Mars is whether crewed missions can be supported by available technologies using in situ resources. Here, we show that photovoltaics-based power systems would be adequate and practical to sustain a crewed outpost for an extended period over a large fraction of the planet's surface. Climate data were integrated into a radiative transfer model to predict spectrally-resolved solar flux across the Martian surface. This informed detailed balance calculations for solar cell devices that identified optimal bandgap combinations for maximizing production capacity over a Martian year. We then quantified power systems, manufacturing, and agricultural demands for a six-person mission, which revealed that photovoltaics-based power generation would require < 10 t of carry-along mass, outperforming alternatives over similar to 50% of Mars' surface.
引用
收藏
页数:7
相关论文
共 22 条
[1]   Towards a Biomanufactory on Mars [J].
Berliner, Aaron J. ;
Hilzinger, Jacob M. ;
Abel, Anthony J. ;
McNulty, Matthew J. ;
Makrygiorgos, George ;
Averesch, Nils J. H. ;
Sen Gupta, Soumyajit ;
Benvenuti, Alexander ;
Caddell, Daniel F. ;
Cestellos-Blanco, Stefano ;
Doloman, Anna ;
Friedline, Skyler ;
Ho, Davian ;
Gu, Wenyu ;
Hill, Avery ;
Kusuma, Paul ;
Lipsky, Isaac ;
Mirkovic, Mia ;
Meraz, Jorge Luis ;
Pane, Vincent ;
Sander, Kyle B. ;
Shi, Fengzhe ;
Skerker, Jeffrey M. ;
Styer, Alexander ;
Valgardson, Kyle ;
Wetmore, Kelly ;
Woo, Sung-Geun ;
Xiong, Yongao ;
Yates, Kevin ;
Zhang, Cindy ;
Zhen, Shuyang ;
Bugbee, Bruce ;
Clark, Douglas S. ;
Coleman-Derr, Devin ;
Mesbah, Ali ;
Nandi, Somen ;
Waymouth, Robert M. ;
Yang, Peidong ;
Criddle, Craig S. ;
McDonald, Karen A. ;
Seefeldt, Lance C. ;
Menezes, Amor A. ;
Arkin, Adam P. .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 8
[2]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[3]   Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency [J].
Cheng, Wen-Hui ;
Richter, Matthias H. ;
May, Matthias M. ;
Ohlmann, Jens ;
Lackner, David ;
Dimroth, Frank ;
Hannappel, Thomas ;
Atwater, Harry A. ;
Lewerenz, Hans-Joachim .
ACS ENERGY LETTERS, 2018, 3 (08) :1795-1800
[4]   Sunlight absorption in water - efficiency and design implications for photoelectrochemical devices [J].
Doescher, H. ;
Geisz, J. F. ;
Deutsch, T. G. ;
Turner, J. A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2951-2956
[5]  
Drake BretG., 2010, Aerospace Conference, P1, DOI DOI 10.1109/AERO.2010.5446736
[6]   High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction [J].
Geisz, J. F. ;
Kurtz, Sarah ;
Wanlass, M. W. ;
Ward, J. S. ;
Duda, A. ;
Friedman, D. J. ;
Olson, J. M. ;
McMahon, W. E. ;
Moriarty, T. E. ;
Kiehl, J. T. .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[7]   Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers [J].
Hanna, M. C. ;
Nozik, A. J. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (07)
[8]   An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems [J].
Hu, Shu ;
Xiang, Chengxiang ;
Haussener, Sophia ;
Berger, Alan D. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (10) :2984-2993
[9]   Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% [J].
Jia, Jieyang ;
Seitz, Linsey C. ;
Benck, Jesse D. ;
Huo, Yijie ;
Chen, Yusi ;
Ng, Jia Wei Desmond ;
Bilir, Taner ;
Harris, James S. ;
Jaramillo, Thomas F. .
NATURE COMMUNICATIONS, 2016, 7
[10]   Comparison of the crystalline quality of step-graded and continuously graded InGaAs buffer layers [J].
Kidd, P ;
Dunstan, DJ ;
Colson, HG ;
Lourenco, MA ;
Sacedon, A ;
GonzalezSanz, F ;
Gonzalez, L ;
Gonzalez, Y ;
Garcia, R ;
Gonzalez, D ;
Pacheco, FJ ;
Goodhew, PJ .
JOURNAL OF CRYSTAL GROWTH, 1996, 169 (04) :649-659