Missing data and auxiliary information in surveys

被引:19
作者
Rueda, M [1 ]
González, S
机构
[1] Univ Granada, Dept Stat & OR, E-18071 Granada, Spain
[2] Univ Jaen, Dept Stat, Jaen, Spain
关键词
auxiliary information; missing data; Horvitz-Thompson estimator;
D O I
10.1007/BF02753912
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes estimation methods with auxiliary information when some observations are missing from the sample. These ratio, difference and regression methods are proposed for any sampling design and are compared with other complete case estimators.
引用
收藏
页码:551 / 567
页数:17
相关论文
共 50 条
[41]   An Innovative Hybrid Neuro-wavelet Method for Reconstruction of Missing Data in Astronomical Photometric Surveys [J].
Capizzi, Giacomo ;
Napoli, Christian ;
Paterno, Lucio .
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2012, 7267 :21-29
[42]   Indirect methods of imputation of missing data based on available units [J].
Rueda, MM ;
González, S ;
Arcos, A .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (01) :249-261
[43]   Are deep learning models superior for missing data imputation in surveys? Evidence from an empirical comparison [J].
Wang, Zhenhua ;
Akande, Olanrewaju ;
Poulos, Jason ;
Li, Fan .
SURVEY METHODOLOGY, 2022, 48 (02) :375-399
[44]   A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores [J].
Sengewald, Erik ;
Hardt, Katinka ;
Sengewald, Marie-Ann .
MULTIVARIATE BEHAVIORAL RESEARCH, 2024,
[45]   Conditional quantile estimation with auxiliary information for left-truncated and dependent data [J].
Liang, Han-Ying ;
de Una-Alvarez, Jacobo .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) :3475-3488
[46]   How to handle missing data in regression models using information criteria [J].
Kuiper, Rebecca M. ;
Hoijtink, Herbert .
STATISTICA NEERLANDICA, 2011, 65 (04) :489-506
[47]   Dissecting Chilean surveys: The case of missing outcomes [J].
San Martin, Ernesto ;
Alarcon-Bustamante, Eduardo .
CHILEAN JOURNAL OF STATISTICS, 2022, 13 (01) :17-46
[48]   Deep and Structure-Preserving Autoencoders for Clustering Data With Missing Information [J].
Choudhury, Suvra Jyoti ;
Pal, Nikhil Ranjan .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (04) :639-650
[49]   Quantifying bias due to missing data in quality of life surveys of advanced-stage cancer patients [J].
Haug, Nina ;
Jaenicke, Martina ;
Kasenda, Benjamin ;
Marschner, Norbert ;
Frank, Melanie .
QUALITY OF LIFE RESEARCH, 2024, 33 (04) :1085-1094
[50]   Speech recognition with auxiliary information [J].
Stephenson, TA ;
Doss, MM ;
Bourlard, H .
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2004, 12 (03) :189-203