Multivariable sub-Hardy Hilbert spaces invariant under the action of n-tuple of finite Blaschke factors

被引:1
作者
Lata, Sneh [1 ]
Pokhriyal, Sushant [1 ]
Singh, Dinesh [2 ]
机构
[1] Shiv Nadal Univ, Sch Nat Sci, Dept Math, Gautam Budh Nagar 203207, Uttar Pradesh, India
[2] SGT Univ, Ctr Lateral Innovat Creat & Knowledge, Gurugmm 122505, Haryana, India
关键词
de Branges spaces; Beurling's theorem; Wold decomposition; Invariant subspaces; Finite Blaschke; Sub-Hardy Hilbert spaces; WANDERING SUBSPACES; BRANGESIAN SPACES; THEOREM;
D O I
10.1016/j.jmaa.2022.126184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with representing in concrete fashion those Hilbert spaces that are vector subspaces of the Hardy spaces H-p (D-n) (1 <= p <= infinity) that remain invariant under the action of coordinate wise multiplication by an n-tuple (T-B(1), T-B(n)) of operators where each B-i, 1 <= i <= n, is a finite Blaschke factor on the open unit disc. The critical point to be noted is that these T-Bi are assumed to be weaker than isometrics as operators. Thus our main theorems extends the principal result of [10] in the following three directions: (i) from one to several variables; (ii) from multiplication with the coordinate function z to an n-tuple of multiplication by finite Blaschke factors B-i, 1 <= i <= n; (iii) from vector subspaces of H-2 (D) to the case of vector subspaces of H-p(D-n), 1 <= p <= infinity. We further derive a generalization of Slocinski's well known Wold type decomposition of a pair of doubly commuting isometrics to the case of n-tuple of doubly commuting operators whose actions are weaker than isometries. (C) 2022 Published by Elsevier Inc.
引用
收藏
页数:21
相关论文
共 20 条
  • [1] Beurling's theorem for the Bergman space
    Aleman, A
    Richter, S
    Sundberg, C
    [J]. ACTA MATHEMATICA, 1996, 177 (02) : 275 - 310
  • [2] ALEMAN A., 1993, MULTIPLICATION OPERA
  • [3] ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE
    BEURLING, A
    [J]. ACTA MATHEMATICA, 1949, 81 (02) : 239 - 255
  • [4] Halmos PR., 1961, J REINE ANGEW MATH, V208, P102
  • [5] Helson H., 1964, LECT INVARIANT SUBSP
  • [6] Hoffman K., 1962, BANACH SPACES ANAL F
  • [7] Izuchi KH, 2011, NEW YORK J MATH, V17A, P301
  • [8] Hyperexpansive composition operators
    Jablonski, ZJ
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 135 : 513 - 526
  • [9] Multiplication invariant subspaces of Hardy spaces
    Lance, TL
    Stessin, MI
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (01): : 100 - 118
  • [10] Lata S, 2018, HOUSTON J MATH, V44, P301