Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance

被引:55
作者
Ou, Xuewu [1 ]
Gan, Lin [1 ]
Luo, Zhengtang [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Kowloon, Hong Kong, Peoples R China
关键词
SUPERCAPACITORS; ELECTRODES; NANOSHEETS; DESIGN; ENERGY; NIO;
D O I
10.1039/c4ta04502e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Droplet-shape hollow Ni3S2 nanoparticles, as well as corresponding partially nickel-filled nanoparticles, of narrow diameter distribution and uniform dispersion were successfully synthesized on two-dimensional graphene templates using a facile process with moderate reaction conditions. The nanoparticle composites were examined as electrochemical supercapacitor materials for energy storage application. We found that the shape of the nanoparticles is dominantly droplet-shape, with shape complementary to graphene support, which ensures good contact between them. The height of the nanoparticles increases linearly with the diameter with a coefficient of 0.44 from the fitting results, and the average height/diameter ratio of those nanoparticles is about 0.6, evidence that the nanoparticles have strong interaction with the graphene template, partially because of graphene-nickel ion interaction which ensures good surface wetting. Such a composite of droplet-shape hollow Ni3S2 nanoparticles grown on reduced graphene oxides (rGOs) exhibits a high specific capacitance of 1022.8 F g(-1) at scanning rate of 2 mV s(-1), with a value of 1015.6 F g(-1) obtained at a discharge current density of 1 A g(-1). Improvement of the rate capability can be further obtained by partially filling the hollow core with nickel metal, as 93.6% of the specific capacitance is retained with this structure by increasing the discharge density from 1 A g(-1) to 10 A g(-1). Our method provides a new approach for controlling the structure of graphene-based nanocomposites, with the potential for use in high performance supercapacitor applications.
引用
收藏
页码:19214 / 19220
页数:7
相关论文
共 34 条
[21]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[22]   Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems [J].
Simon, P. ;
Gogotsi, Y. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1094-1103
[23]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[24]   Graphene-Based Ultracapacitors [J].
Stoller, Meryl D. ;
Park, Sungjin ;
Zhu, Yanwu ;
An, Jinho ;
Ruoff, Rodney S. .
NANO LETTERS, 2008, 8 (10) :3498-3502
[25]   Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials [J].
Wang, Hailiang ;
Casalongue, Hernan Sanchez ;
Liang, Yongye ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (21) :7472-7477
[26]   The synthesis of nickel nanoparticles by hydrazine reduction [J].
Wu, Zhi Gang ;
Munoz, M. ;
Montero, O. .
ADVANCED POWDER TECHNOLOGY, 2010, 21 (02) :165-168
[27]   Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? [J].
Xia, Younan ;
Xiong, Yujie ;
Lim, Byungkwon ;
Skrabalak, Sara E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (01) :60-103
[28]   Formation of hollow nanocrystals through the nanoscale Kirkendall Effect [J].
Yin, YD ;
Rioux, RM ;
Erdonmez, CK ;
Hughes, S ;
Somorjai, GA ;
Alivisatos, AP .
SCIENCE, 2004, 304 (5671) :711-714
[29]   Formation of NixCo3-xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties [J].
Yu, Le ;
Zhang, Lei ;
Wu, Hao Bin ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (14) :3711-3714
[30]   Synthesis of Bacteria Promoted Reduced Graphene Oxide-Nickel Sulfide Networks for Advanced Supercapacitors [J].
Zhang, Haiming ;
Yu, Xinzhi ;
Guo, Di ;
Qu, Baihua ;
Zhang, Ming ;
Li, Qiuhong ;
Wang, Taihong .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :7335-7340