Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance

被引:54
|
作者
Ou, Xuewu [1 ]
Gan, Lin [1 ]
Luo, Zhengtang [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Kowloon, Hong Kong, Peoples R China
关键词
SUPERCAPACITORS; ELECTRODES; NANOSHEETS; DESIGN; ENERGY; NIO;
D O I
10.1039/c4ta04502e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Droplet-shape hollow Ni3S2 nanoparticles, as well as corresponding partially nickel-filled nanoparticles, of narrow diameter distribution and uniform dispersion were successfully synthesized on two-dimensional graphene templates using a facile process with moderate reaction conditions. The nanoparticle composites were examined as electrochemical supercapacitor materials for energy storage application. We found that the shape of the nanoparticles is dominantly droplet-shape, with shape complementary to graphene support, which ensures good contact between them. The height of the nanoparticles increases linearly with the diameter with a coefficient of 0.44 from the fitting results, and the average height/diameter ratio of those nanoparticles is about 0.6, evidence that the nanoparticles have strong interaction with the graphene template, partially because of graphene-nickel ion interaction which ensures good surface wetting. Such a composite of droplet-shape hollow Ni3S2 nanoparticles grown on reduced graphene oxides (rGOs) exhibits a high specific capacitance of 1022.8 F g(-1) at scanning rate of 2 mV s(-1), with a value of 1015.6 F g(-1) obtained at a discharge current density of 1 A g(-1). Improvement of the rate capability can be further obtained by partially filling the hollow core with nickel metal, as 93.6% of the specific capacitance is retained with this structure by increasing the discharge density from 1 A g(-1) to 10 A g(-1). Our method provides a new approach for controlling the structure of graphene-based nanocomposites, with the potential for use in high performance supercapacitor applications.
引用
收藏
页码:19214 / 19220
页数:7
相关论文
共 50 条
  • [1] PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2
    Sinan, Neriman
    Unur, Ece
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (01) : 50 - 59
  • [2] In-situ growth of graphene decorated Ni3S2 pyramids on Ni foam for high-performance overall water splitting
    Yu, Jing
    Du, Yue
    Li, Qianqian
    Zhen, Liang
    Dravid, Vinayak P.
    Wu, Jinsong
    Xu, Cheng-Yan
    APPLIED SURFACE SCIENCE, 2019, 465 : 772 - 779
  • [3] Uncovering the role of Ag in layer-alternating Ni3S2/Ag/Ni3S2 as an electrocatalyst with enhanced OER performance
    Guo, Rui
    He, Yan
    Wang, Renchao
    You, Junhua
    Lin, Hongji
    Chen, Chiente
    Chan, Tingshan
    Liu, Xuanwen
    Hu, Zhiwei
    INORGANIC CHEMISTRY FRONTIERS, 2020, 7 (19): : 3627 - 3635
  • [4] Ni3S2 coated ZnO array for high-performance supercapacitors
    Xing, Zhicai
    Chu, Qingxin
    Ren, Xinbang
    Ge, Chenjiao
    Qusti, Abdullah H.
    Asiri, Abdullah M.
    Al-Youbi, Abdulrahman O.
    Sun, Xuping
    JOURNAL OF POWER SOURCES, 2014, 245 : 463 - 467
  • [5] One-pot construction of 3-D graphene nanosheets/Ni3S2 nanoparticles composite for high-performance supercapacitors
    Li, Zesheng
    Li, Bolin
    Liao, Cuina
    Liu, Zhisen
    Li, Dehao
    Wang, Hongqiang
    Li, Qingyu
    ELECTROCHIMICA ACTA, 2017, 253 : 344 - 356
  • [6] Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose
    Luan, Feng
    Zhang, Shuang
    Chen, Dandan
    Wei, Fanmei
    Zhuang, Xuming
    MICROCHEMICAL JOURNAL, 2018, 143 : 450 - 456
  • [7] Ni3S2 Nanoparticles Anchored on d-Ti3C2 Nanosheets with Enhanced Sodium Storage
    Li, Chenyang
    Zhang, Dongdong
    Cao, Jin
    Yu, Pengfei
    Qin, Jiaqian
    Zhang, Xinyu
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (03): : 2593 - 2599
  • [8] Tailoring synthesis of Ni3S2 nanosheets with high electrochemical performance by electrodeposition
    Li, Yanhong
    Shi, Min
    Wang, Li
    Wang, Meiri
    Li, Jing
    Cui, Hongtao
    ADVANCED POWDER TECHNOLOGY, 2018, 29 (05) : 1092 - 1098
  • [9] Preparation of Fe-Doped Ni3S2/Ni(OH)2/Ni/NSG Composites and Enhanced Water Splitting Performance
    Zhou, Qi
    Wang, Jiang
    Feng, Chengcheng
    Luo, Youcheng
    Su, Wenxiao
    Liu, Haorui
    Zhang, Yiming
    ENERGY TECHNOLOGY, 2024,
  • [10] Facile Construction of 3D Reduced Graphene Oxide Wrapped Ni3S2 Nanoparticles on Ni Foam for High-Performance Asymmetric Supercapacitor Electrodes
    Qi, Jiqiu
    Chang, Yuan
    Sui, Yanwei
    He, Yezeng
    Meng, Qingkun
    Wei, Fuxiang
    Zhao, Yulong
    Jin, Yunxue
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2017, 34 (12)