NONPARAMETRIC ESTIMATION OF THE DENSITY OF THE ALTERNATIVE HYPOTHESIS IN A MULTIPLE TESTING SETUP. APPLICATION TO LOCAL FALSE DISCOVERY RATE ESTIMATION
被引:3
|
作者:
Van Hanh Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, Lab Math Orsay, UMR CNRS 8628, F-91405 Orsay, France
Univ Evry Val Essonne, Lab Stat & Genome, UMR CNRS 8071, USC INRA, F-91037 Evry, FranceUniv Paris 11, Lab Math Orsay, UMR CNRS 8628, F-91405 Orsay, France
Van Hanh Nguyen
[1
,2
]
Matias, Catherine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Evry Val Essonne, Lab Stat & Genome, UMR CNRS 8071, USC INRA, F-91037 Evry, FranceUniv Paris 11, Lab Math Orsay, UMR CNRS 8628, F-91405 Orsay, France
Matias, Catherine
[2
]
机构:
[1] Univ Paris 11, Lab Math Orsay, UMR CNRS 8628, F-91405 Orsay, France
[2] Univ Evry Val Essonne, Lab Stat & Genome, UMR CNRS 8071, USC INRA, F-91037 Evry, France
False discovery rate;
kernel estimation;
local false discovery rate;
maximum smoothed likelihood;
multiple testing;
p-values;
semiparametric mixture model;
MAXIMUM SMOOTHED LIKELIHOOD;
TRUE NULL HYPOTHESES;
GENE-EXPRESSION;
MIXTURE MODEL;
EM ALGORITHM;
P-VALUES;
MICROARRAY;
PROPORTION;
D O I:
10.1051/ps/2013041
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In a multiple testing context, we consider a semiparametric mixture model with two components where one component is known and corresponds to the distribution of p-values under the null hypothesis and the other component f is nonparametric and stands for the distribution under the alternative hypothesis. Motivated by the issue of local false discovery rate estimation, we focus here on the estimation of the nonparametric unknown component f in the mixture, relying on a preliminary estimator of the unknown proportion. of true null hypotheses. We propose and study the asymptotic properties of two different estimators for this unknown component. The first estimator is a randomly weighted kernel estimator. We establish an upper bound for its pointwise quadratic risk, exhibiting the classical nonparametric rate of convergence over a class of Holder densities. To our knowledge, this is the first result establishing convergence as well as corresponding rate for the estimation of the unknown component in this nonparametric mixture. The second estimator is a maximum smoothed likelihood estimator. It is computed through an iterative algorithm, for which we establish a descent property. In addition, these estimators are used in a multiple testing procedure in order to estimate the local false discovery rate. Their respective performances are then compared on synthetic data.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, CEMS, RCSDS,NCMIS, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, CEMS, RCSDS,NCMIS, Beijing, Peoples R China
Sun, Xiaoya
Fu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, CEMS, RCSDS,NCMIS, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, CEMS, NCMIS,RCSDS, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, CEMS, RCSDS,NCMIS, Beijing, Peoples R China
机构:
Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
Moscow Ctr Fundamental & Appl Math, Moscow 119991, RussiaMoscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
Palionnaya, Sofia
Shestakov, Oleg
论文数: 0引用数: 0
h-index: 0
机构:
Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
Russian Acad Sci, Inst Informat Problems, Fed Res Ctr Comp Sci & Control, Moscow 119333, RussiaMoscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
机构:
Chinese Acad Sci, Acad Math & Syst Sci, CEMS, NCMIS,RCSDS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, CEMS, NCMIS,RCSDS, Beijing 100190, Peoples R China
Cao, Zixuan
Sun, Xiaoya
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, CEMS, NCMIS,RCSDS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, CEMS, NCMIS,RCSDS, Beijing 100190, Peoples R China
Sun, Xiaoya
Fu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, CEMS, NCMIS,RCSDS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, CEMS, NCMIS,RCSDS, Beijing 100190, Peoples R China