NONPARAMETRIC ESTIMATION OF THE DENSITY OF THE ALTERNATIVE HYPOTHESIS IN A MULTIPLE TESTING SETUP. APPLICATION TO LOCAL FALSE DISCOVERY RATE ESTIMATION

被引:3
|
作者
Van Hanh Nguyen [1 ,2 ]
Matias, Catherine [2 ]
机构
[1] Univ Paris 11, Lab Math Orsay, UMR CNRS 8628, F-91405 Orsay, France
[2] Univ Evry Val Essonne, Lab Stat & Genome, UMR CNRS 8071, USC INRA, F-91037 Evry, France
关键词
False discovery rate; kernel estimation; local false discovery rate; maximum smoothed likelihood; multiple testing; p-values; semiparametric mixture model; MAXIMUM SMOOTHED LIKELIHOOD; TRUE NULL HYPOTHESES; GENE-EXPRESSION; MIXTURE MODEL; EM ALGORITHM; P-VALUES; MICROARRAY; PROPORTION;
D O I
10.1051/ps/2013041
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a multiple testing context, we consider a semiparametric mixture model with two components where one component is known and corresponds to the distribution of p-values under the null hypothesis and the other component f is nonparametric and stands for the distribution under the alternative hypothesis. Motivated by the issue of local false discovery rate estimation, we focus here on the estimation of the nonparametric unknown component f in the mixture, relying on a preliminary estimator of the unknown proportion. of true null hypotheses. We propose and study the asymptotic properties of two different estimators for this unknown component. The first estimator is a randomly weighted kernel estimator. We establish an upper bound for its pointwise quadratic risk, exhibiting the classical nonparametric rate of convergence over a class of Holder densities. To our knowledge, this is the first result establishing convergence as well as corresponding rate for the estimation of the unknown component in this nonparametric mixture. The second estimator is a maximum smoothed likelihood estimator. It is computed through an iterative algorithm, for which we establish a descent property. In addition, these estimators are used in a multiple testing procedure in order to estimate the local false discovery rate. Their respective performances are then compared on synthetic data.
引用
收藏
页码:584 / 612
页数:29
相关论文
共 18 条
  • [1] A SEMIPARAMETRIC MIXTURE METHOD FOR LOCAL FALSE DISCOVERY RATE ESTIMATION FROM MULTIPLE STUDIES
    Jeong, Seok-Oh
    Choi, Dongseok
    Jang, Woncheol
    ANNALS OF APPLIED STATISTICS, 2020, 14 (03) : 1242 - 1257
  • [2] Local false discovery rate estimation with competition-based procedures for variable selection
    Sun, Xiaoya
    Fu, Yan
    STATISTICS IN MEDICINE, 2024, 43 (01) : 61 - 88
  • [3] Parametric Estimation of the Local False Discovery Rate for Identifying Genetic Associations
    Yang, Ye
    Aghababazadeh, Farnoosh Abbas
    Bickel, David R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (01) : 98 - 108
  • [4] A semi-parametric approach for mixture models: Application to local false discovery rate estimation
    Robin, Stephane
    Bar-Hen, Avner
    Daudin, Jean-Jacques
    Pierre, Laurent
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5483 - 5493
  • [5] Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    Li, Jun
    Witten, Daniela M.
    Johnstone, Iain M.
    Tibshirani, Robert
    BIOSTATISTICS, 2012, 13 (03) : 523 - 538
  • [6] Optimal False Discovery Rate Control with Kernel Density Estimation in a Microarray Experiment
    Kang, Moonsu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 771 - 780
  • [7] Asymptotic Properties of MSE Estimate for the False Discovery Rate Controlling Procedures in Multiple Hypothesis Testing
    Palionnaya, Sofia
    Shestakov, Oleg
    MATHEMATICS, 2020, 8 (11) : 1 - 11
  • [8] Kerfdr: a semi-parametric kernel-based approach to local false discovery rate estimation
    Mickael Guedj
    Stephane Robin
    Alain Celisse
    Gregory Nuel
    BMC Bioinformatics, 10
  • [9] Kerfdr: a semi-parametric kernel-based approach to local false discovery rate estimation
    Guedj, Mickael
    Robin, Stephane
    Celisse, Alain
    Nuel, Gregory
    BMC BIOINFORMATICS, 2009, 10
  • [10] Deep neural network-based feature selection with local false discovery rate estimation
    Cao, Zixuan
    Sun, Xiaoya
    Fu, Yan
    APPLIED INTELLIGENCE, 2025, 55 (01)