Deep learning enhanced Rydberg multifrequency microwave recognition

被引:67
作者
Liu, Zong-Kai [1 ,2 ]
Zhang, Li-Hua [1 ,2 ]
Liu, Bang [1 ,2 ]
Zhang, Zheng-Yuan [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Ding, Dong-Sheng [1 ,2 ]
Shi, Bao-Sen [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ELECTROMETRY;
D O I
10.1038/s41467-022-29686-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recognition of multifrequency microwave (MW) electric fields is challenging because of the complex interference of multifrequency fields in practical applications. Rydberg atom-based measurements for multifrequency MW electric fields is promising in MW radar and MW communications. However, Rydberg atoms are sensitive not only to the MW signal but also to noise from atomic collisions and the environment, meaning that solution of the governing Lindblad master equation of light-atom interactions is complicated by the inclusion of noise and high-order terms. Here, we solve these problems by combining Rydberg atoms with deep learning model, demonstrating that this model uses the sensitivity of the Rydberg atoms while also reducing the impact of noise without solving the master equation. As a proof-of-principle demonstration, the deep learning enhanced Rydberg receiver allows direct decoding of the frequency-division multiplexed signal. This type of sensing technology is expected to benefit Rydberg-based MW fields sensing and communication.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Electromagnetically induced transparency and Autler-Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems [J].
Abi-Salloum, Tony Y. .
PHYSICAL REVIEW A, 2010, 81 (05)
[2]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[3]   STARK EFFECT IN RAPIDLY VARYING FIELDS [J].
AUTLER, SH ;
TOWNES, CH .
PHYSICAL REVIEW, 1955, 100 (02) :703-722
[4]   Enhanced electric field sensitivity of rf-dressed Rydberg dark states [J].
Bason, M. G. ;
Tanasittikosol, M. ;
Sargsyan, A. ;
Mohapatra, A. K. ;
Sarkisyan, D. ;
Potvliege, R. M. ;
Adams, C. S. .
NEW JOURNAL OF PHYSICS, 2010, 12
[5]   Reinforcement Learning in Different Phases of Quantum Control [J].
Bukov, Marin ;
Day, Alexandre G. R. ;
Sels, Dries ;
Weinberg, Phillip ;
Polkovnikov, Anatoli ;
Mehta, Pankaj .
PHYSICAL REVIEW X, 2018, 8 (03)
[6]  
Chollet F., 2015, Keras
[7]  
Chollet Francois, 2017, Deep learning with Python, P384
[8]   Quantum-Limited Atomic Receiver in the Electrically Small Regime [J].
Cox, Kevin C. ;
Meyer, David H. ;
Fatemi, Fredrik K. ;
Kunz, Paul D. .
PHYSICAL REVIEW LETTERS, 2018, 121 (11)
[9]   Machine-learning recognition of light orbital-angular-momentum superpositions [J].
da Silva, B. Pinheiro ;
Marques, B. A. D. ;
Rodrigues, R. B. ;
Ribeiro, P. H. Souto ;
Khoury, A. Z. .
PHYSICAL REVIEW A, 2021, 103 (06)
[10]   Machine learning approach to OAM beam demultiplexing via convolutional neural networks [J].
Doster, Timothy ;
Watnik, Abbie T. .
APPLIED OPTICS, 2017, 56 (12) :3386-3396