The boundedness of h-admissible Fourier integral operators on Bessel potential spaces

被引:8
作者
Aid, Omar Farouk [1 ]
Senoussaoui, Abderrahmane [1 ]
机构
[1] Univ Oran1, Fac Exact & Appl Sci, Lab Fundamental & Appl Math Oran LMFAO, Dept Math, Oran, Algeria
关键词
h-admissible Fourier integral operators; symbol and phase; Sobolev and Bessel potential spaces;
D O I
10.3906/mat-1904-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to study the boundedness of h-admissible Fourier integral operators. These operators are bounded on the Bessel potential spaces if the weight of the amplitude is bounded.
引用
收藏
页码:2125 / 2141
页数:17
相关论文
共 11 条
[1]  
Abels H., 2012, Pseudodifferential and Singular Integral Operators: An Introduction with Applications
[2]   h-Admissible Fourier integral operators [J].
Aitemrar, Chafika Amel ;
Senoussaoui, Abderrahmane .
TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) :553-568
[3]   SPATIALLY INHOMOGENEOUS PSEUDODIFFERENTIAL OPERATORS .2. [J].
BEALS, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (02) :161-205
[4]  
CALDERON AP, 1971, J MATH SOC JPN, V23, P374
[5]   FOURIER INTEGRAL OPERATORS. II [J].
Duistermaat, J. J. ;
Hormander, L. .
ACTA MATHEMATICA, 1972, 128 (01) :183-269
[6]   ESTIMATES FOR SINGULAR RADON TRANSFORMS AND PSEUDODIFFERENTIAL-OPERATORS WITH SINGULAR SYMBOLS [J].
GREENLEAF, A ;
UHLMANN, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :202-232
[7]   A class of unbounded Fourier integral operators [J].
Hasanov, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (02) :641-651
[8]  
Helffer B., 1984, SOC MATH FRANCE ASTE, V112
[9]   FOURIER INTEGRAL OPERATORS .1. [J].
HORMANDER, L .
ACTA MATHEMATICA UPPSALA, 1971, 127 (1-2) :79-+
[10]  
Messirdi B, 2005, Z ANAL ANWEND, V24, P581