Asymptotics of solutions for a class of quasilinear second-order ordinary differential equations

被引:1
作者
Akhmetov, R. G. [1 ]
机构
[1] Bashkir State Pedag Univ, Ufa, Russia
基金
俄罗斯基础研究基金会;
关键词
Volume Chemical Reaction; Asymptotic Formula; Kutta Method; Asymptotic Representation; Explicit Scheme;
D O I
10.1134/S0012266110020011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of quasilinear second-order ordinary differential equations that arise in the investigation of the problem on stationary convective mass transfer between a drop and a solid medium in the presence of a volume chemical reaction of power-law form [F(upsilon) a parts per thousand upsilon (nu) ] for the case in which the Peclet number Pe and the rate constant k (upsilon) of the volume chemical reaction tend to infinity. We prove the existence and uniqueness theorem for a boundary value problem and analyze asymptotic properties of the solution.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 10 条
[1]  
[Ахметов Р.Г. Akhmetov R.G.], 2006, [Журнал вычислительной математики и математической физики, Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki], V46, P834
[2]  
AKHMETOV RG, 2002, ZH VYCHISL MAT MAT F, V42, P1600
[3]  
AKHMETOV RG, 2005, DIFF URAVN, V41, P723
[4]  
AKHMETOV RG, 2003, P STEKL I MATH S, V1, pS8
[5]  
Babenko K.I., 2002, Fundamentals of Numerical Analysis
[6]  
GUPALO YP, 1985, MASSOTEPLOOBMEN REAG
[7]  
Ilin A.M., 1989, SER TRANSLATIONS MAT, V102
[8]  
KRYLOV VS, 1967, IZV AKAD NAUK SSSR M, P146
[9]  
Rakitskii Yu.V., 1979, Numerical Methods for Solving Stiff Systems
[10]  
ZHIVOTJAGIN AF, 1980, VESTN MOSK U MAT M+, P73