On the tunnel number and the Morse-Novikov number of knots

被引:9
作者
Pajitnov, Andrei [1 ]
机构
[1] Univ Nantes, Lab Math Jean Leray, Fac Sci, UMR 6629, F-44072 Nantes, France
关键词
LINKS; ADDITIVITY; SUM;
D O I
10.2140/agt.2010.10.627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a link in S(3); denote by MN(L) the Morse-Novikov number of L and by t(L) the tunnel number of L. We prove that MN(L) <= 2t(L) and deduce several corollaries.
引用
收藏
页码:627 / 635
页数:9
相关论文
共 26 条
[1]  
Clark B., 1980, INT J MATH MATH SCI, V3, P583, DOI DOI 10.1155/S0161171280000440
[2]   A GENERALIZED BRIDGE NUMBER FOR LINKS IN 3-MANIFOLDS [J].
DOLL, H .
MATHEMATISCHE ANNALEN, 1992, 294 (04) :701-717
[3]  
GODA H, 1993, OSAKA J MATH, V30, P63
[4]  
Goda H, 2005, OSAKA J MATH, V42, P557
[5]  
GODA H, 2006, KNOTS EVERYTHING, V40, P35
[6]   Dynamics of gradient flows in the half-transversal Morse theory [J].
Goda, Hiroshi ;
Pajitnov, Andrei V. .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (01) :6-10
[7]  
HIRASAWA M, J KNOT THEO IN PRESS
[8]   Some invariants of pretzel links [J].
Kim, Dongseok ;
Lee, Jaeun .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (02) :253-271
[9]  
Kobayashi T., 1994, J KNOT THEOR RAMIF, V3, P179, DOI [10.1142/S0218216594000137, DOI 10.1142/S0218216594000137]
[10]  
Kobayashi T, 2006, J REINE ANGEW MATH, V592, P63