The Polyketide Synthase Pks13 Catalyzes a Novel Mechanism of Lipid Transfer in Mycobacteria

被引:91
作者
Gavalda, Sabine [1 ,3 ]
Bardou, Fabienne [1 ,3 ]
Laval, Francoise [1 ,3 ]
Bon, Cecile [2 ,3 ]
Malaga, Wladimir [1 ,3 ]
Chalut, Christian [1 ,3 ]
Guilhot, Christophe [1 ,3 ]
Mourey, Lionel [2 ,3 ]
Daffe, Mamadou [1 ,3 ]
Quemard, Annaik [1 ,3 ]
机构
[1] CNRS, IPBS, Dept TB & Biol Infect, UMR5089, F-31077 Toulouse, France
[2] CNRS, IPBS, Dept Biol Struct & Biophys, UMR5089, F-31077 Toulouse, France
[3] Univ Toulouse, UPS, IPBS, F-31077 Toulouse, France
来源
CHEMISTRY & BIOLOGY | 2014年 / 21卷 / 12期
关键词
MYCOLIC ACID BIOSYNTHESIS; CELL-WALL; OUTER-MEMBRANE; TUBERCULOSIS; TREHALOSE; ACYLTRANSFERASES; ANTIGEN; CONDENSATION; PERMEABILITY; TRANSPORTER;
D O I
10.1016/j.chembiol.2014.10.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mycolate-containing compounds constitute major strategic elements of the protective coat surrounding the tubercle bacillus. We have previously shown that FAAL32-Pks13 polyketide synthase catalyzes the condensation reaction, which produces a-alkyl b-ketoacids, direct precursors of mycolic acids. In contrast to the current biosynthesis model, we show here that Pks13 catalyzes itself the release of the neosynthesized products and demonstrate that this function is carried by its thioesterase-like domain. Most importantly, in agreement with the prediction of a trehalose-binding pocket in its catalytic site, this domain exhibits an acyltransferase activity and transfers Pks13's products onto an acceptor molecule, mainly trehalose, leading to the formation of the trehalose monomycolate precursor. Thus, this work allows elucidation of the hinge step of the mycolate-containing compound biosynthesis pathway. Above all, it highlights a unique mechanism of transfer of polyketide synthase products in mycobacteria, which is distinct from the conventional intervention of the discrete polyketide-associated protein (Pap)-type acyltransferases.
引用
收藏
页码:1660 / 1669
页数:10
相关论文
共 48 条
[1]   An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (antigen 85B), a mycolyl transferase [J].
Anderson, DH ;
Harth, G ;
Horwitz, MA ;
Eisenberg, D .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (02) :671-681
[2]  
[Anonymous], GLOB TUB REP 2013
[3]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[4]   Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis [J].
Belisle, JT ;
Vissa, VD ;
Sievert, T ;
Takayama, K ;
Brennan, PJ ;
Besra, GS .
SCIENCE, 1997, 276 (5317) :1420-1422
[5]   IDENTIFICATION OF THE APPARENT CARRIER IN MYCOLIC ACID SYNTHESIS [J].
BESRA, GS ;
SIEVERT, T ;
LEE, RE ;
SLAYDEN, RA ;
BRENNAN, PJ ;
TAKAYAMA, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12735-12739
[6]   Loss of a Mycobacterial Gene Encoding a Reductase Leads to an Altered Cell Wall Containing β-oxo-Mycolic Acid Analogs and Accumulation of Ketones [J].
Bhatt, Apoorva ;
Brown, Alistair K. ;
Singh, Albel ;
Minnikin, David E. ;
Besra, Gurdyal S. .
CHEMISTRY & BIOLOGY, 2008, 15 (09) :930-939
[7]   Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis [J].
Bhatt, Kiranmai ;
Gurcha, Sudagar S. ;
Bhatt, Apoorva ;
Besra, Gurdyal S. ;
Jacobs, William R., Jr. .
MICROBIOLOGY-SGM, 2007, 153 :513-520
[8]   The mycobacterial acyltransferase PapA5 is required for biosynthesis of cell wall-associated phenolic glycolipids [J].
Chavadi, Sivagami Sundaram ;
Onwueme, Kenolisa C. ;
Edupuganti, Uthamaphani R. ;
Jerome, Jeff ;
Chatterjee, Delphi ;
Soll, Clifford E. ;
Quadri, Luis E. N. .
MICROBIOLOGY-SGM, 2012, 158 :1379-1387
[9]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[10]  
Daffe M., 2014, MOL GENETICS MYCOBAC, VSecond, P559