On monotone and geometric convergence of Schwarz methods for two-sided obstacle problems

被引:51
作者
Zeng, JP [1 ]
Zhou, SZ [1 ]
机构
[1] Hunan Univ, Dept Appl Math, Changsha, Hunan, Peoples R China
关键词
variational inequalities; obstacle problems; Schwarz algorithms; monotone convergence; geometrical convergence; h-independent convergence rate;
D O I
10.1137/S0036142995288920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence of Schwarz methods is discussed for certain discretizations of two-sided obstacle problems. Monotone and especially geometrical convergence are established if the stiffness matrix is a kind of M-matrix, and an h-independent convergence rate is proved for uniformly overlapping decomposition.
引用
收藏
页码:600 / 616
页数:17
相关论文
共 21 条
[1]   ON THE SCHWARZ ALTERNATING METHOD WITH MORE THAN 2 SUBDOMAINS FOR NONLINEAR MONOTONE PROBLEMS [J].
BADEA, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :179-204
[2]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P1, DOI 10.1090/S0025-5718-1991-1090464-8
[3]   MULTIPLICATIVE SCHWARZ ALGORITHMS FOR SOME NONSYMMETRIC AND INDEFINITE PROBLEMS [J].
CAI, XC ;
WIDLUND, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :936-952
[4]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[5]  
DRYJA M, 1989, DOMAIN DECOMPOSITION, P168
[6]  
DRYJA M, 1990, DOMAIN DECOMPOSITION, P340
[7]  
KUZNETSOV Y, 1994, DOMAIN DECOMPOSITION, P271
[8]  
Kuznetsov Y. A., 1995, P DOM DEC METH SCI E, P251
[9]  
Lions P-L, 1988, 1 INT S DOM DEC METH, P1
[10]  
LIONS PL, 1989, P 2 INT S DOM DEC ME, P47