Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface

被引:15
作者
Demoulini, Sophia [1 ]
机构
[1] Ctr Math Sci, Cambridge CB3 0WB, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2007年 / 24卷 / 02期
关键词
nonlinear Schroedinger; Chern-Simons; global existence; regularity;
D O I
10.1016/j.anihpc.2006.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Global existence of regular solutions for a nonlinear Schroedinger-Chern-Simons system of equations on a two-dimensional compact Riemannian manifold is proved. (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:207 / 225
页数:19
相关论文
共 14 条
[1]  
Aubin T., 1980, Nonlinear Analysis on Manifolds. Monge-Ampere Equations
[2]   BLOWING-UP TIME-DEPENDENT SOLUTIONS OF THE PLANAR, CHERN-SIMONS GAUGED NONLINEAR SCHRODINGER-EQUATION [J].
BERGE, L ;
DEBOUARD, A ;
SAUT, JC .
NONLINEARITY, 1995, 8 (02) :235-253
[3]   COLLAPSE OF CHERN-SIMMONS GAUGED MATTER FIELDS [J].
BERGE, L ;
DEBOUARD, A ;
SAUT, JC .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :3907-3911
[4]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[5]   Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory [J].
Chae, D ;
Choe, K .
NONLINEARITY, 2002, 15 (03) :747-758
[6]  
DEMOULINI S, 1997, COMMUN ANAL GEOM, V5, P121
[7]  
DEMOULINI S, 2000, INT C DIFF EQ, V1, P542
[8]  
Kato T., 1970, J. Fac. Sci., Univ. Tokyo, Sect. I, V17, P241
[9]  
Majda A., 1984, COMPRESSIBLE FLUID F, V53
[10]   First order vortex dynamics [J].
Manton, NS .
ANNALS OF PHYSICS, 1997, 256 (01) :114-131