In vivo medial and lateral tibial loads during dynamic and high flexion activities

被引:177
作者
Zhao, Dong
Banks, Scott A.
D'Lima, Darryl D.
Colwell, Clifford W., Jr.
Fregly, Benjamin J. [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Orthopaed & Rehabil, Gainesville, FL USA
[3] Univ Florida, Dept Biochem Engn, Gainesville, FL USA
[4] Scripps Clin, Shiley Ctr Orthopaed Res & Educ, La Jolla, CA USA
关键词
elastic foundation contact model; in vivo knee forces; total knee arthroplasty; instrumented knee implant;
D O I
10.1002/jor.20362
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Though asymmetric loading between the medial and lateral compartments of total knee replacements may contribute to implant loosening and failure, the in vivo contact force distribution during dynamic daily activities remains unknown. This study reports in vivo medial and lateral contact forces experienced by a well-aligned knee implant for a variety of activities. In vivo implant motion and total axial load data were collected from a single knee replacement patient performing treadmill gait (hands resting on handlebars), step up/down, lunge, and kneel activities. In vivo motion was measured using video fluoroscopy, while in vivo axial loads were collected simultaneously using an instrumented tibial component. An elastic foundation contact model employing linear and nonlinear polyethylene material properties was constructed to calculate medial and lateral contact forces based on the measured kinematics, total axial loads, and centers of pressure. For all activities, the predicted medial and lateral contact forces were insensitive to the selected material model. The percentage of medial to total contact force ranged from 18 to 60 for gait, 47 to 65 for step up/down, and 55 to 60 for kneel and lunge. At maximum load during the motion cycle, medial force was 1.2 BW for gait and 2.0 BW for step up/down, while the corresponding lateral forces were 1.0 and 1.5 BW, respectively. At mean load in the final static pose, medial force was 0.2 BW for kneel and 0.9 BWforlunge, with corresponding lateral forces of 0.1 and 0.7 BW, respectively. For this patient, a constant load split of 55% medial-45% lateral duringloaded activity wouldbe a reasonable approximation for these test conditions. (c) 2007 Orthopaedic Research Society.
引用
收藏
页码:593 / 602
页数:10
相关论文
共 31 条
[1]   PRESSURE DISTRIBUTION ON ARTICULAR SURFACES - APPLICATION TO JOINT STABILITY EVALUATION [J].
AN, KN ;
HIMENO, S ;
TSUMURA, H ;
KAWAI, T ;
CHAO, EYS .
JOURNAL OF BIOMECHANICS, 1990, 23 (10) :1013-1020
[2]  
Andriacchi T P, 1986, J Arthroplasty, V1, P211, DOI 10.1016/S0883-5403(86)80033-X
[3]   THE INFLUENCE OF TOTAL KNEE-REPLACEMENT DESIGN ON WALKING AND STAIR-CLIMBING [J].
ANDRIACCHI, TP ;
GALANTE, JO ;
FERMIER, RW .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1982, 64 (09) :1328-1335
[4]  
Banks S A, 1997, Am J Knee Surg, V10, P261
[5]   In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties [J].
Banks, SA ;
Markovich, GD ;
Hodge, WA .
JOURNAL OF ARTHROPLASTY, 1997, 12 (03) :297-304
[6]   Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy [J].
Banks, SA ;
Hodge, WA .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1996, 43 (06) :638-649
[7]  
BARTEL DL, 1995, CLIN ORTHOP RELAT R, P76
[8]   Multibody dynamic simulation of knee contact mechanics [J].
Bei, YH ;
Fregly, BJ .
MEDICAL ENGINEERING & PHYSICS, 2004, 26 (09) :777-789
[9]   ARTICULAR CONTACT IN A 3-DIMENSIONAL MODEL OF THE KNEE [J].
BLANKEVOORT, L ;
KUIPER, JH ;
HUISKES, R ;
GROOTENBOER, HJ .
JOURNAL OF BIOMECHANICS, 1991, 24 (11) :1019-1031
[10]  
BLUNN GW, 1991, CLIN ORTHOP RELAT R, V273, P523