A FRACTIONAL PARABOLIC INVERSE PROBLEM INVOLVING A TIME-DEPENDENT MAGNETIC POTENTIAL

被引:8
作者
Li, Li [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
fractional partial differential equations; inverse problems; Runge approximation property; CALDERON PROBLEM; APPROXIMATION; COEFFICIENTS; UNIQUENESS; OPERATOR;
D O I
10.1137/20M1359638
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of fractional parabolic equations involving a time-dependent magnetic potential and formulate the corresponding inverse problem.We determine both the magnetic potential and the electric potential from the exterior partial measurements of the Dirichlet-to-Neumann map.
引用
收藏
页码:435 / 452
页数:18
相关论文
共 26 条
[1]  
Bhattacharyya S., T AM MATH SOC
[2]   Determining coefficients in class of heat equations via boundary measurements [J].
Canuto, B ;
Kavian, O .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (05) :963-986
[3]   The Calderon problem for the fractional Schrodinger equation with drift [J].
Cekic, Mihajlo ;
Lin, Yi-Hsuan ;
Rueland, Angkana .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)
[4]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[5]  
Choulli M., 2004, J. Inverse Ill-Posed Probl, V12, P233, DOI [10.1515/1569394042215856, DOI 10.1515/1569394042215856]
[6]   An inverse problem for the fractional Schrodinger equation in a magnetic field [J].
Covi, Giovanni .
INVERSE PROBLEMS, 2020, 36 (04)
[7]  
Dautary R., 2000, EVOLUTION PROBLEMS, V5
[8]   Local Approximation of Arbitrary Functions by Solutions of Nonlocal Equations [J].
Dipierro, Serena ;
Savin, Ovidiu ;
Valdinoci, Enrico .
JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (02) :1428-1455
[9]   Determining a magnetic Schroedinger operator from partial Cauchy data [J].
Dos Santos Ferreira, David ;
Kenig, Carlos E. ;
Sjostrand, Johannes ;
Uhlmann, Gunther .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :467-488
[10]   Uniqueness and reconstruction for the fractional Calderon problem with a single measurement [J].
Ghosh, Tuhin ;
Rueland, Angkana ;
Salo, Mikko ;
Uhlmann, Gunther .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (01)