The Reverse Transcriptases Associated with CRISPR-Cas Systems

被引:17
作者
Toro, Nicolas [1 ]
Martinez-Abarca, Francisco [1 ]
Gonzalez-Delgado, Alejandro [1 ]
机构
[1] CSIC, Struct Dynam & Funct Rhizobacterial Genomes, Dept Soil Microbiol & Symbiot Syst, Grp Ecol Genet Rizosfera,Estac Expt Zaidin, C Profesor Albareda 1, E-18008 Granada, Spain
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
DEPENDENT DNA-POLYMERASE; GROUP-II INTRONS; DIVERSITY; CLASSIFICATION; RECOGNITION; CLEAVAGE; ELEMENTS; VIRIONS;
D O I
10.1038/s41598-017-07828-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR (clustered regularly interspaced short palindromic repeats) and associated proteins (Cas) act as adaptive immune systems in bacteria and archaea. Some CRISPR-Cas systems have been found to be associated with putative reverse transcriptases (RT), and an RT-Cas1 fusion associated with a type III-B system has been shown to acquire RNA spacers in vivo. Nevertheless, the origin and evolutionary relationships of these RTs and associated CRISPR-Cas systems remain largely unknown. We performed a comprehensive phylogenetic analysis of these RTs and associated Cas1 proteins, and classified their CRISPR-Cas modules. These systems were found predominantly in bacteria, and their presence in archaea may be due to a horizontal gene transfer event. These RTs cluster into 12 major clades essentially restricted to particular phyla, suggesting host-dependent functioning. The RTs and associated Cas1 proteins may have largely coevolved. They are, therefore, subject to the same selection pressures, which may have led to coadaptation within particular protein complexes. Furthermore, our results indicate that the association of an RT with a CRISPR-Cas system has occurred on multiple occasions during evolution.
引用
收藏
页数:7
相关论文
共 50 条
[21]   CRISPR-Cas bioinformatics [J].
Alkhnbashi, Omer S. ;
Meier, Tobias ;
Mitrofanov, Alexander ;
Backofen, Rolf ;
Voss, Bjoern .
METHODS, 2020, 172 :3-11
[22]   Diversity and dynamics of the CRISPR-Cas systems associated with Bacteroides fragilis in human population [J].
Lam, Tony J. ;
Mortensen, Kate ;
Ye, Yuzhen .
BMC GENOMICS, 2022, 23 (01)
[23]   Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools [J].
Negahdaripour, Manica ;
Nezafat, Navid ;
Hajighahramani, Nasim ;
Rahmatabadi, Seyyed Soheil ;
Ghasemi, Younes .
INFECTION GENETICS AND EVOLUTION, 2017, 54 :355-373
[24]   CRISPR-Cas Systems-Based Bacterial Detection: A Scoping Review [J].
Selvam, Kasturi ;
Najib, Mohamad Ahmad ;
Khalid, Muhammad Fazli ;
Ozsoz, Mehmet ;
Aziah, Ismail .
DIAGNOSTICS, 2022, 12 (06)
[25]   Advances in Industrial Biotechnology Using CRISPR-Cas Systems [J].
Donohoue, Paul D. ;
Barrangou, Rodolphe ;
May, Andrew P. .
TRENDS IN BIOTECHNOLOGY, 2018, 36 (02) :134-146
[26]   Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium [J].
Briner, Alexandra E. ;
Lugli, Gabriele Andrea ;
Milani, Christian ;
Duranti, Sabrina ;
Turroni, Francesca ;
Gueimonde, Miguel ;
Margolles, Abelardo ;
van Sinderen, Douwe ;
Ventura, Marco ;
Barrangou, Rodolphe .
PLOS ONE, 2015, 10 (07)
[27]   Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems [J].
Shmakov, Sergey ;
Abudayyeh, Omar O. ;
Makarova, Kira S. ;
Wolf, Yuri I. ;
Gootenberg, Jonathan S. ;
Semenova, Ekaterina ;
Minakhin, Leonid ;
Joung, Julia ;
Konermann, Silvana ;
Severinov, Konstantin ;
Zhang, Feng ;
Koonin, Eugene V. .
MOLECULAR CELL, 2015, 60 (03) :385-397
[28]   Characterization and applications of Type I CRISPR-Cas systems [J].
Hidalgo-Cantabrana, Claudio ;
Barrangou, Rodolphe .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (01) :15-23
[29]   Applications of CRISPR-Cas systems in lactic acid bacteria [J].
Roberts, Avery ;
Barrangou, Rodolphe .
FEMS MICROBIOLOGY REVIEWS, 2020, 44 (05) :523-537
[30]   Characterization and distribution of CRISPR-Cas systems in Lactobacillus sakei [J].
Schuster, Julian A. ;
Vogel, Rudi F. ;
Ehrmann, Matthias A. .
ARCHIVES OF MICROBIOLOGY, 2019, 201 (03) :337-347