Ground states of nonlinear Schrodinger equations with sum of periodic and inverse-square potentials

被引:44
作者
Guo, Qianqiao [1 ]
Mederski, Jaroslaw [2 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Postbox 894, Xian 710129, Peoples R China
[2] Nicholas Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Ground state; Variational methods; Strongly indefinite functional; Nehari-Pankov manifold; Inverse-square potential; OPERATORS;
D O I
10.1016/j.jde.2015.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of solutions of the following nonlinear Schrodinger equation -Delta u + (V(x) - mu/vertical bar x vertical bar(2))u = f (x, u) for x is an element of R-N \ {0}, where V : R-N --> R and f : R-N x R --> R are periodic in x is an element of R-N. We assume that 0 does not lie in the spectrum of -Delta + V and mu < (N-2)(2)/4, N >= 3. The superlinear and subcritical term f satisfies a weak monotonicity condition. For sufficiently small mu >= 0 we find a ground state solution as a minimizer of the energy functional on a natural constraint. If mu < 0 and 0 lies below the spectrum of -Delta + V, then ground state solutions do not exist. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:4180 / 4202
页数:23
相关论文
共 30 条
[1]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[2]  
[Anonymous], 1997, Minimax theorems
[3]   Deformation theorems on non-metrizable vector spaces and applications to critical point theory [J].
Bartsch, Thomas ;
Ding, Yanheng .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (12) :1267-1288
[4]   Ground and Bound State Solutions of Semilinear Time-Harmonic Maxwell Equations in a Bounded Domain [J].
Bartsch, Thomas ;
Mederski, Jaroslaw .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (01) :283-306
[5]  
Bonanno C, 2013, DYNAM PART DIFFER EQ, V10, P177
[6]  
Chabrowski J, 2009, TOPOL METHOD NONL AN, V34, P201
[7]   Solutions of Schrodinger equations with inverse square potential and critical nonlinearity [J].
Deng, Yinbin ;
Jin, Lingyu ;
Peng, Shuangjie .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) :1376-1398
[8]   Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity [J].
Felli, V ;
Terracini, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (03) :469-495
[9]   On Schrodinger operators with multipolar inverse-square potentials [J].
Felli, Veronica ;
Marchini, Elsa M. ;
Terracini, Susanna .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :265-316
[10]   ON THE EXISTENCE OF GROUND STATE SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS WITH MULTISINGULAR INVERSE-SQUARE ANISOTROPIC POTENTIALS [J].
Felli, Veronica .
JOURNAL D ANALYSE MATHEMATIQUE, 2009, 108 :189-217