Well-Posedness in Gevrey Function Space for 3D Prandtl Equations without Structural Assumption

被引:20
作者
Li, Wei-Xi [1 ,2 ]
Masmoudi, Nader [3 ,4 ]
Yang, Tong [5 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
[3] Courant Inst, 251 Mercer St, New York, NY 10012 USA
[4] NYU Abu Dhabi, Abu Dhabi, U Arab Emirates
[5] City Univ Hong Kong, Dept Math, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
关键词
ILL-POSEDNESS; INVISCID LIMIT; INSTABILITY; EXPANSIONS; EXISTENCE; STABILITY; EULER; FLOWS;
D O I
10.1002/cpa.21989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the well-posedness in Gevrey function space with optimal class of regularity 2 for the three-dimensional Prandtl system without any structural assumption. The proof combines in a novel way a new cancellation in the system with some of the old ideas to overcome the difficulty of the loss of derivatives in the system. This shows that the three-dimensional instabilities in the system leading to ill-posedness are not worse than the two-dimensional ones. (c) 2021 Wiley Periodicals LLC.
引用
收藏
页码:1755 / 1797
页数:43
相关论文
共 33 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]   A NOTE ON THE ABSTRACT CAUCHY-KOWALEWSKI THEOREM [J].
ASANO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) :102-105
[3]   Onsager's Conjecture with Physical Boundaries and an Application to the Vanishing Viscosity Limit [J].
Bardos, Claude ;
Titi, Edriss S. ;
Wiedemann, Emil .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) :291-310
[4]   Mathematics and turbulence: where do we stand? [J].
Bardos, Claude W. ;
Titi, Edriss S. .
JOURNAL OF TURBULENCE, 2013, 14 (03) :42-76
[5]  
Collot, 190308244MATHAP
[6]  
Collot C., 2018, 180805967MATHAP
[8]   SEPARATION FOR THE STATIONARY PRANDTL EQUATION [J].
Dalibard, Anne-Laure ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 130 (01) :187-297
[9]   Well-Posedness of the Prandtl Equations Without Any Structural Assumption [J].
Dietert, Helge ;
Gerard-Varet, David .
ANNALS OF PDE, 2019, 5 (01)
[10]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88