New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression

被引:108
作者
Ichii, Kazuhito [1 ,2 ,3 ]
Ueyama, Masahito [4 ]
Kondo, Masayuki [1 ,3 ]
Saigusa, Nobuko [2 ]
Kim, Joon [5 ,6 ]
Carmelita Alberto, Ma. [7 ]
Ardoe, Jonas [8 ]
Euskirchen, Eugenie S. [9 ]
Kang, Minseok [6 ]
Hirano, Takashi [10 ]
Joiner, Joanna [11 ]
Kobayashi, Hideki [1 ]
Marchesini, Luca Belelli [12 ,13 ]
Merbold, Lutz [14 ,15 ]
Miyata, Akira [16 ]
Saitoh, Taku M. [17 ]
Takagi, Kentaro [18 ]
Varlagin, Andrej [19 ]
Bret-Harte, M. Syndonia [9 ]
Kitamura, Kenzo [20 ]
Kosugi, Yoshiko [21 ]
Kotani, Ayumi [22 ]
Kumar, Kireet [23 ]
Li, Sheng-Gong [24 ]
Machimura, Takashi [25 ]
Matsuura, Yojiro [26 ]
Mizoguchi, Yasuko [27 ]
Ohta, Takeshi [22 ]
Mukherjee, Sandipan [23 ]
Yanagi, Yuji [1 ]
Yasuda, Yukio [28 ]
Zhang, Yiping [29 ]
Zhao, Fenghua [24 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol, Dept Environm Geochem Cycle Res, Yokohama, Kanagawa, Japan
[2] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan
[3] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[4] Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka, Japan
[5] Seoul Natl Univ, Interdisciplinary Program Agr & Forest Meteorol, Dept Landscape Architecture & Rural Syst Engn, Seoul, South Korea
[6] Natl Ctr AgroMeteorol, Seoul, South Korea
[7] Int Rice Res Inst, Los Banos, Philippines
[8] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[9] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA
[10] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido, Japan
[11] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[12] Vrije Univ Amsterdam, Dept Earth Sci, Earth & Climate Cluster, Amsterdam, Netherlands
[13] Far Eastern Fed Univ, Sch Nat Sci, Vladivostok, Russia
[14] Int Livestock Res Inst, Mazingira Ctr, Nairobi, Kenya
[15] ETH, Inst Agr Sci, Grassland Sci, Dept Environm Syst Sci, Zurich, Switzerland
[16] NARO, Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan
[17] Gifu Univ, River Basin Res Ctr, Gifu, Japan
[18] Hokkaido Univ, Field Sci Ctr Northern Biosphere, Sapporo, Hokkaido, Japan
[19] AN Severtsov Inst Ecol & Evolut RAS, Moscow, Russia
[20] Forestry & Forest Prod Res Inst, Kyushu Res Ctr, Kumamoto, Japan
[21] Kyoto Univ, Grad Sch Agr, Kyoto, Japan
[22] Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi, Japan
[23] GBP Natl Inst Himalayan Environm & Sustainable De, Almora, India
[24] Chinese Acad Sci, Key Lab Ecosyst Network Observat & Modeling, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
[25] Osaka Univ, Grad Sch Engn, Suita, Osaka, Japan
[26] Forestry & Forest Prod Res Inst, Ctr Int Partnerships & Res Climate Change, Tsukuba, Ibaraki, Japan
[27] Forestry & Forest Prod Res Inst, Hokkaido Res Ctr, Sapporo, Hokkaido, Japan
[28] Forestry & Forest Prod Res Inst, Dept Meteorol Environm, Tsukuba, Ibaraki, Japan
[29] Chinese Acad Sci, Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Mengla, Peoples R China
基金
美国国家科学基金会;
关键词
terrestrial CO2 flux; data-driven model; eddy covariance data; remote sensing; Asia; upscaling; CARBON-DIOXIDE EXCHANGE; NET ECOSYSTEM EXCHANGE; GROSS PRIMARY PRODUCTIVITY; FOREST ECOSYSTEMS; COMBINING MODIS; LARCH FOREST; ENVIRONMENTAL CONTROLS; SPATIAL VARIATIONS; USE-EFFICIENCY; AMERIFLUX DATA;
D O I
10.1002/2016JG003640
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8days are reproduced (e.g., r(2)=0.73 and 0.42 for 8day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r(2)=1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
引用
收藏
页码:767 / 795
页数:29
相关论文
共 127 条
[1]   CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines [J].
Alberto, Ma. Carmelita R. ;
Wassmann, Reiner ;
Hirano, Takashi ;
Miyata, Akira ;
Kumar, Arvind ;
Padre, Agnes ;
Amante, Modesto .
AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (10) :1737-1750
[2]   Trends and Variability of AVHRR-Derived NPP in India [J].
Bala, Govindasamy ;
Joshi, Jaideep ;
Chaturvedi, Rajiv K. ;
Gangamani, Hosahalli V. ;
Hashimoto, Hirofumi ;
Nemani, Rama .
REMOTE SENSING, 2013, 5 (02) :810-829
[3]   Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate [J].
Beer, Christian ;
Reichstein, Markus ;
Tomelleri, Enrico ;
Ciais, Philippe ;
Jung, Martin ;
Carvalhais, Nuno ;
Roedenbeck, Christian ;
Arain, M. Altaf ;
Baldocchi, Dennis ;
Bonan, Gordon B. ;
Bondeau, Alberte ;
Cescatti, Alessandro ;
Lasslop, Gitta ;
Lindroth, Anders ;
Lomas, Mark ;
Luyssaert, Sebastiaan ;
Margolis, Hank ;
Oleson, Keith W. ;
Roupsard, Olivier ;
Veenendaal, Elmar ;
Viovy, Nicolas ;
Williams, Christopher ;
Woodward, F. Ian ;
Papale, Dario .
SCIENCE, 2010, 329 (5993) :834-838
[4]  
Belelli Marchesini L., 2007, THESIS
[5]   Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data [J].
Bonan, Gordon B. ;
Lawrence, Peter J. ;
Oleson, Keith W. ;
Levis, Samuel ;
Jung, Martin ;
Reichstein, Markus ;
Lawrence, David M. ;
Swenson, Sean C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011, 116
[6]   Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers [J].
Burba, George G. ;
McDermitt, Dayle K. ;
Grelle, Achim ;
Anderson, Daniel J. ;
Xu, Liukang .
GLOBAL CHANGE BIOLOGY, 2008, 14 (08) :1854-1876
[7]   Regional carbon fluxes from land use and land cover change in Asia, 1980-2009 [J].
Calle, Leonardo ;
Canadell, Josep G. ;
Patra, Prabir ;
Ciais, Philippe ;
Ichii, Kazuhito ;
Tian, Hanqin ;
Kondo, Masayuki ;
Piao, Shilong ;
Arneth, Almut ;
Harper, Anna B. ;
Ito, Akihiko ;
Kato, Etsushi ;
Koven, Charlie ;
Sitch, Stephen ;
Stocker, Benjamin D. ;
Vivoy, Nicolas ;
Wiltshire, Andy ;
Zaehle, Soenke ;
Poulter, Benjamin .
ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (07)
[8]   Role of land-surface changes in Arctic summer warming [J].
Chapin, FS ;
Sturm, M ;
Serreze, MC ;
McFadden, JP ;
Key, JR ;
Lloyd, AH ;
McGuire, AD ;
Rupp, TS ;
Lynch, AH ;
Schimel, JP ;
Beringer, J ;
Chapman, WL ;
Epstein, HE ;
Euskirchen, ES ;
Hinzman, LD ;
Jia, G ;
Ping, CL ;
Tape, KD ;
Thompson, CDC ;
Walker, DA ;
Welker, JM .
SCIENCE, 2005, 310 (5748) :657-660
[9]   Carbon dioxide and methane exchange of a north-east Siberian tussock tundra [J].
Corradi, C ;
Kolle, O ;
Walter, K ;
Zimov, SA ;
Schulze, ED .
GLOBAL CHANGE BIOLOGY, 2005, 11 (11) :1910-1925
[10]  
Cox P.M., 2001, DESCRIPTION TRIFFID