F-HYPERCYCLIC OPERATORS ON FRECHET

被引:3
作者
Kostic, Marko [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2019年 / 106卷 / 120期
关键词
F-hypercyclicity; (m(n))-hypercyclicity; q-frequent hypercyclicity; SEMIGROUPS; DENSITY;
D O I
10.2298/PIM1920001K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate F-hypercyclicity of linear, not necessarily continuous, operators on Frechet spaces. The notion of lower (mn)-hypercyclicity seems to be new and not considered elsewhere even for linear continuous operators acting on Frechet spaces. We pay special attention to the study of q-frequent hypercyclicity, where q >= 1 is an arbitrary real number. We present several new concepts and results for lower and upper densities in a separate section, providing also a great number of illustrative examples and open problems.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 29 条
[1]   DISTRIBUTIONALLY CHAOTIC FAMILIES OF OPERATORS ON FRECHET SPACES [J].
Alberto Conejero, J. ;
Kostic, Marko ;
Miana, Pedro J. ;
Murillo-Arcila, Marina .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) :1915-1939
[2]   LOCAL INTEGRATED SEMIGROUPS - EVOLUTION WITH JUMPS OF REGULARITY [J].
ARENDT, W ;
ELMENNAOUI, O ;
KEYANTUO, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 186 (02) :572-595
[3]  
Bayart F, 2009, CAMB TRACT MATH, P1, DOI 10.1017/CBO9780511581113
[4]   Frequently hypercyclic operators [J].
Bayart, Frederic ;
Grivaux, Sophie .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) :5083-5117
[5]   Difference sets and frequently hypercyclic weighted shifts [J].
Bayart, Frederic ;
Ruzsa, Imre Z. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 :691-709
[6]   (NON-)WEAKLY MIXING OPERATORS AND HYPERCYCLICITY SETS [J].
Bayart, Frederic ;
Matheron, Etienne .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (01) :1-35
[7]   Strong transitivity properties for operators [J].
Bes, J. ;
Menet, Q. ;
Peris, A. ;
Puig, Y. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) :1313-1337
[8]  
Bes J., 2009, ERGOD THEOR DYN, V29, P1993
[9]   Frequently hypercyclic operators and vectors [J].
Bonilla, A. ;
Grosse-Erdmann, K. -G. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :383-404
[10]   Upper frequent hypercyclicity and related notions [J].
Bonilla, Antonio ;
Grosse-Erdmann, Karl-G. .
REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (03) :673-711