Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications

被引:113
|
作者
Sharifi, Sina [1 ]
Islam, Mohammad Mirazul [1 ]
Sharifi, Hannah [1 ]
Islam, Rakibul [2 ]
Koza, Darrell [3 ]
Reyes-Ortega, Felisa [7 ,8 ]
Alba-Molina, David [7 ,8 ]
Nilsson, Per H. [2 ,4 ]
Dohlman, Claes H. [1 ]
Mollnes, Tom Eirik [2 ,5 ,6 ,9 ]
Chodosh, James [1 ]
Gonzalez-Andrades, Miguel [1 ,7 ,8 ]
机构
[1] Harvard Med Sch, Dept Ophthalmol, Massachusetts Eye & Ear & Schepens Eye Res Inst, Boston, MA 02115 USA
[2] Univ Oslo, Rikshosp, Oslo Univ Hosp, Dept Immunol, Oslo, Norway
[3] Eastern Connecticut State Univ, Dept Phys Sci, Willimantic, CT 06226 USA
[4] Linnaeus Univ, Linnaeus Ctr Biomat Chem, Kalmar, Sweden
[5] Nordland Hosp, Res Lab, Bodo, Norway
[6] Norwegian Univ Sci & Technol, Ctr Mol Inflammat Res, Trondheim, Norway
[7] Reina Sofia Univ Hosp, Dept Ophthalmol, Maimonides Biomed Res Inst Cordoba IMIBIC, Cordoba, Spain
[8] Univ Cordoba, Cordoba, Spain
[9] Univ Tromso, KG Jebsen TREC, Fac Hlth Sci, Tromso, Norway
基金
美国国家科学基金会;
关键词
Natural-based hydrogel; Gelatin; Biocompatible; Biomimetic; Bioadhesive; Cornea; PHOTOCROSSLINKABLE GELATIN; NETWORK HYDROGELS; CROSS-LINKING; IN-VITRO; SCAFFOLDS; TOUGH; CHONDROCYTES; COMPLEMENT; GENERATION; STRENGTH;
D O I
10.1016/j.bioactmat.2021.03.042
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gelatin based adhesives have been used in the last decades in different biomedical applications due to the excellent biocompatibility, easy processability, transparency, non-toxicity, and reasonable mechanical properties to mimic the extracellular matrix (ECM). Gelatin adhesives can be easily tuned to gain different viscoelastic and mechanical properties that facilitate its ocular application. We herein grafted glycidyl methacrylate on the gelatin backbone with a simple chemical modification of the precursor, utilizing epoxide ring-opening reactions and visible light-crosslinking. This chemical modification allows the obtaining of an elastic protein-based hydrogel (GELGYM) with excellent biomimetic properties, approaching those of the native tissue. GELGYM can be modulated to be stretched up to 4 times its initial length and withstand high tensile stresses up to 1.95 MPa with compressive strains as high as 80% compared to Gelatin-methacryloyl (GeIMA), the most studied derivative of gelatin used as a bioadhesive. GELGYM is also highly biocompatible and supports cellular adhesion, proliferation, and migration in both 2 and 3-dimensional cell-cultures. These characteristics along with its super adhesion to biological tissues such as cornea, aorta, heart, muscle, kidney, liver, and spleen suggest widespread applications of this hydrogel in many biomedical areas such as transplantation, tissue adhesive, wound dressing, bioprinting, and drug and cell delivery.
引用
收藏
页码:3947 / 3961
页数:15
相关论文
共 50 条
  • [21] Gelatin-based hydrogel functionalized with taurine moieties for in vivo skin tissue regeneration
    Rahimi, Farnaz
    Ahmadkhani, Nima
    Goodarzi, Aida
    Noori, Fariba
    Hassanzadeh, Sajad
    Saghati, Sepideh
    Khanmohammadi, Mehdi
    Goodarzi, Arash
    BIO-DESIGN AND MANUFACTURING, 2023, 6 (03) : 284 - 297
  • [22] Gelatin-based hydrogel functionalized with taurine moieties for in vivo skin tissue regeneration
    Farnaz Rahimi
    Nima Ahmadkhani
    Aida Goodarzi
    Fariba Noori
    Sajad Hassanzadeh
    Sepideh Saghati
    Mehdi Khanmohammadi
    Arash Goodarzi
    Bio-Design and Manufacturing, 2023, (03) : 284 - 297
  • [23] Gelatin-based hydrogel functionalized with taurine moieties for in vivo skin tissue regeneration
    Farnaz Rahimi
    Nima Ahmadkhani
    Aida Goodarzi
    Fariba Noori
    Sajad Hassanzadeh
    Sepideh Saghati
    Mehdi Khanmohammadi
    Arash Goodarzi
    Bio-Design and Manufacturing, 2023, 6 (03) : 284 - 297
  • [24] PHOTO-CROSSLINKABLE GELATIN-BASED HYDROGELS FOR ADIPOSE TISSUE ENGINEERING
    Van Damme, Lana
    TISSUE ENGINEERING PART A, 2022, 28 : S178 - S178
  • [25] Green synthesis of a new gelatin-based antimicrobial scaffold for tissue engineering
    Yazdimamaghani, Mostafa
    Vashaee, Daryoosh
    Assefa, Senait
    Shabrangharehdasht, Mitra
    Rad, Armin Tahmasbi
    Eastman, Margaret A.
    Walker, Kenneth J.
    Madihally, Sundar V.
    Koehler, Gerwald A.
    Tayebi, Lobat
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 39 : 235 - 244
  • [26] Nonlinear poroviscoelastic behavior of gelatin-based hydrogel
    Chen, Si
    Ravi-Chandar, Krishnaswamy
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2022, 158
  • [27] Preparation and properties of high performance gelatin-based hydrogels with chitosan or hydroxyethyl cellulose for tissue engineering applications
    Dey, Kamol
    Agnelli, Silvia
    Serzanti, Marialaura
    Ginestra, Paola
    Scari, Giorgio
    Dell'Era, Patrizia
    Sartore, Luciana
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (04) : 183 - 192
  • [28] Gelatin and Glycerine-Based Bioadhesive Vaginal Hydrogel
    Cassano, Roberta
    Curcio, Federica
    Mandracchia, Delia
    Trapani, Adriana
    Trombino, Sonia
    CURRENT DRUG DELIVERY, 2020, 17 (04) : 303 - 311
  • [29] Tough Gelatin Hydrogel for Tissue Engineering
    Yuan, Ximin
    Zhu, Zhou
    Xia, Pengcheng
    Wang, Zhenjia
    Zhao, Xiao
    Jiang, Xiao
    Wang, Tianming
    Gao, Qing
    Xu, Jie
    Shan, Debin
    Guo, Bin
    Yao, Qingqiang
    He, Yong
    ADVANCED SCIENCE, 2023, 10 (24)
  • [30] Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications
    Ravi Ghanshyam Patel
    Alberto Purwada
    Leandro Cerchietti
    Giorgio Inghirami
    Ari Melnick
    Akhilesh K. Gaharwar
    Ankur Singh
    Cellular and Molecular Bioengineering, 2014, 7 : 394 - 408