Numerical analysis for Navier-Stokes equations with time fractional derivatives

被引:43
作者
Zhang, Jun [1 ]
Wang, JinRong [2 ,3 ]
机构
[1] Guizhou Univ Finance & Econ, Computat Math Res Ctr, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Caputo fractional derivative; Finite difference; Legendre-spectral method; Error estimate; FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS; PROJECTION METHODS; HEAT-TRANSFER; RELAXATION; STABILITY; FLUID; MODEL;
D O I
10.1016/j.amc.2018.04.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study numerical approximation for a class of Navier-Stokes equations with time fractional derivatives. We propose a scheme using finite difference approach in fractional derivative and Legendre-spectral method approximations in space and prove that the scheme is unconditionally stable. In addition, the error estimate shows that the numerical solutions converge with the order O(Delta t(2-alpha)+Delta N-t-alpha(1-s)), 0 < alpha < 1 being the order of the fractional derivative in time. Numerical examples are illustrated to verify the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:481 / 489
页数:9
相关论文
共 36 条
[1]  
Baker G.A., 1976, Galerkin Approximations for the Navier-Stokes Equations
[2]   A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation [J].
Bhrawy, A. H. ;
Zaky, M. A. ;
Van Gorder, R. A. .
NUMERICAL ALGORITHMS, 2016, 71 (01) :151-180
[3]   Efficient Legendre spectral tau algorithm for solving the two-sided space-time Caputo fractional advection-dispersion equation [J].
Bhrawy, A. H. ;
Zaky, M. A. ;
Machado, J. A. Tenreiro .
JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (08) :2053-2068
[4]  
BHRAWY AH, 2015, ROM REP PHYS, V67, P1
[5]   Accurate projection methods for the incompressible Navier-Stokes equations [J].
Brown, DL ;
Cortez, R ;
Minion, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 168 (02) :464-499
[6]   MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid over a moving plate [J].
Cao, Zhi ;
Zhao, Jinhu ;
Wang, Zhijiang ;
Liu, Fawang ;
Zheng, Liancun .
JOURNAL OF MOLECULAR LIQUIDS, 2016, 222 :1121-1127
[7]   Mild solutions to the time fractional Navier-Stokes equations in RN [J].
de Carvalho-Neto, Paulo Mendes ;
Planas, Gabriela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :2948-2980
[8]  
El-Shahed M., 2004, GEN NAVIER STOKES EQ
[9]   RELAXATION AND RETARDATION FUNCTIONS OF THE MAXWELL MODEL WITH FRACTIONAL DERIVATIVES [J].
FRIEDRICH, C .
RHEOLOGICA ACTA, 1991, 30 (02) :151-158
[10]   Analytical Solution of Time-Fractional Navier-Stokes Equation in Polar Coordinate by Homotopy Perturbation Method [J].
Ganji, Z. Z. ;
Ganji, D. D. ;
Ganji, Ammar D. ;
Rostamian, M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (01) :117-124