A census of quadratic post-critically finite rational functions defined over Q

被引:7
作者
Lukas, David [1 ]
Manes, Michelle [2 ]
Yap, Diane [2 ]
机构
[1] Univ Hawaii, Honolulu, HI 96822 USA
[2] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
POINTS; MAPS;
D O I
10.1112/S1461157014000266
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find all quadratic post-critically finite (PCF) rational functions defined over Q, up to conjugation by elements of PGL(2)((Q) over bar). We describe an algorithm to search for possibly PCF functions. Using the algorithm, we eliminate all but 12 rational functions, all of which are verified to be PCF. We also give a complete description of all possible rational preperiodic structures for quadratic PCF functions defined over Q.
引用
收藏
页码:314 / 329
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 2022, Sage Mathematics Software (Version 9.4)
[2]  
Benedetto R., 2012, ARXIV12011605V1
[3]  
Brezin Eva., 2000, CONFORM GEOM DYN, V4, P35, DOI DOI 10.1090/S1088-4173-00-00050-3
[4]   Rational Functions with a Unique Critical Point [J].
Faber, Xander .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (03) :681-699
[5]  
Granlund T., 2013, GNU MULTIPLE PRECISO
[6]  
Jones R., 2011, ARXIV11014339V3
[7]   Q-rational cycles for degree-2 rational maps having an automorphism [J].
Manes, Michelle .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :669-696
[8]   Explicit descriptions of quadratic maps on P1 defined over a field K [J].
Manes, Michelle ;
Yasufuku, Yu .
ACTA ARITHMETICA, 2011, 148 (03) :257-267
[9]   Moduli spaces for families of rational maps on P1 [J].
Manes, Michelle .
JOURNAL OF NUMBER THEORY, 2009, 129 (07) :1623-1663
[10]  
Milnor J., 1993, EXPT MATH, V2, P37, DOI 10.1080/10586458.1993.10504267