Clustering of high-dimensional gene expression data with feature filtering methods and diffusion maps

被引:28
作者
Xu, Rui [1 ]
Damelin, Steven [2 ]
Nadler, Boaz [3 ]
Wunsch, Donald C., II [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Appl Computat Intelligence Lab, Rolla, MO 65409 USA
[2] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
[3] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
基金
美国国家科学基金会;
关键词
Clustering; Diffusion maps; Feature filtering; Fuzzy ART; Gene expression profiles; MULTICLASS CANCER CLASSIFICATION; MOLECULAR CLASSIFICATION; FEATURE-SELECTION; PREDICTION; PATTERNS;
D O I
10.1016/j.artmed.2009.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Objective: The importance of gene expression data in cancer diagnosis and treatment has become widely known by cancer researchers in recent years. However, one of the major challenges in the computational analysis of such data is the curse of dimensionality because of the overwhelming number of variables measured (genes) versus the small number of samples. Here, we use a two-step method to reduce the dimension of gene expression data and aim to address the problem of high dimensionality. Methods: First, we extract a subset of genes based on statistical characteristics of their corresponding gene expression levels. Then, for further dimensionality reduction, we apply diffusion maps, which interpret the eigenfunctions of Markov matrices as a system of coordinates on the original data set, in order to obtain efficient representation of data geometric descriptions. Finally, a neural network clustering theory, fuzzy ART, is applied to the resulting data to generate clusters of cancer samples. Results: Experimental results on the small round blue-cell tumor data set, compared with other widely used clustering algorithms, such as the hierarchical clustering algorithm and K-means, show that our proposed method can effectively identify different cancer types and generate high-quality cancer sample clusters. Conclusion: The proposed feature selection methods and diffusion maps can achieve useful information from the multidimensional gene expression data and prove effective at addressing the problem of high dimensionality inherent in gene expression data analysis. (C) 2009 Elsevier BM. All rights reserved.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 38 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]  
[Anonymous], NATL VITAL STAT REP
[4]  
[Anonymous], 2005, HDB COMPUTATIONAL MO
[5]  
Bellman R. E., 1957, Dynamic programming. Princeton landmarks in mathematics
[6]  
BENDOR A, 2000, P 4 ANN INT C COMP M, P54
[7]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[8]   FUZZY ART - FAST STABLE LEARNING AND CATEGORIZATION OF ANALOG PATTERNS BY AN ADAPTIVE RESONANCE SYSTEM [J].
CARPENTER, GA ;
GROSSBERG, S ;
ROSEN, DB .
NEURAL NETWORKS, 1991, 4 (06) :759-771
[9]   A MASSIVELY PARALLEL ARCHITECTURE FOR A SELF-ORGANIZING NEURAL PATTERN-RECOGNITION MACHINE [J].
CARPENTER, GA ;
GROSSBERG, S .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1987, 37 (01) :54-115
[10]   Gene selection in cancer classification using sparse logistic regression with Bayesian regularization [J].
Cawley, Gavin C. ;
Talbot, Nicola L. C. .
BIOINFORMATICS, 2006, 22 (19) :2348-2355