Unconventional scaling theory in disorder-driven quantum phase transition

被引:7
作者
Luo, Xunlong [1 ,2 ]
Ohtsuki, Tomi [3 ]
Shindou, Ryuichi [1 ,2 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Sophia Univ, Dept Phys, Chiyoda Ku, Tokyo 1028554, Japan
关键词
ANDERSON TRANSITION; MOBILITY EDGE; LOCALIZATION; SYSTEMS; UNIVERSALITY; CONDUCTANCE; SYMMETRY; DIFFUSION; ABSENCE;
D O I
10.1103/PhysRevB.98.020201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We clarify unconventional forms of the scaling functions of conductance, critical conductance distribution, and localization length in a disorder-driven quantum phase transition between band insulator and Weyl semimetal phases. Quantum criticality of the phase transition is controlled by a clean-limit fixed point with spatially anisotropic scale invariance. We argue that the anisotropic scale invariance is reflected on the scaling function forms in the quantum phase transition. We verify the proposed scaling function forms in terms of transfer-matrix calculations of conductance and localization length in a tight-binding model.
引用
收藏
页数:5
相关论文
共 41 条
  • [1] SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS
    ABRAHAMS, E
    ANDERSON, PW
    LICCIARDELLO, DC
    RAMAKRISHNAN, TV
    [J]. PHYSICAL REVIEW LETTERS, 1979, 42 (10) : 673 - 676
  • [2] Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
    Altland, A
    Zirnbauer, MR
    [J]. PHYSICAL REVIEW B, 1997, 55 (02): : 1142 - 1161
  • [3] NEW METHOD FOR A SCALING THEORY OF LOCALIZATION
    ANDERSON, PW
    THOULESS, DJ
    ABRAHAMS, E
    FISHER, DS
    [J]. PHYSICAL REVIEW B, 1980, 22 (08): : 3519 - 3526
  • [4] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [5] Balents L., 2011, PHYSICS, V4, P36, DOI DOI 10.1103/PHYSICS.4.36
  • [6] Cardy J., 1996, CAMBRIDGE LECT NOTES
  • [7] Effect of disorder on 2D topological merging transition from a Dirac semi-metal to a normal insulator
    Carpentier, David
    Fedorenko, Andrei A.
    Orignac, Edmond
    [J]. EPL, 2013, 102 (06)
  • [8] Disorder and Metal-Insulator Transitions in Weyl Semimetals
    Chen, Chui-Zhen
    Song, Juntao
    Jiang, Hua
    Sun, Qing-feng
    Wang, Ziqiang
    Xie, X. C.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (24)
  • [9] UNIVERSALITY IN DISORDERED MESOSCOPIC SYSTEMS
    COHEN, A
    SHAPIRO, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (08): : 1243 - 1253