A recurrent network for dynamic system identification

被引:10
作者
Adwankar, S [1 ]
Banavar, RN [1 ]
机构
[1] Indian Inst Technol, Bombay 400076, Maharashtra, India
关键词
D O I
10.1080/00207729708929481
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a type of recurrent artificial neural network architecture for identification of an arbitrary, continuous dynamic system. The recurrent network is shown to be stable for a constant input with certain conditions on the parameters of the network. The proposed network has significant advantages over similar models in continuous time nonlinear system identification and is used to identify three nonlinear dynamic systems. Finally, the applicability of the radial basis function networks using the same network architecture to reduce the time-complexity of the training task is presented.
引用
收藏
页码:1239 / 1250
页数:12
相关论文
共 12 条
[1]  
AGARWAL P, 1982, CHEM ENG SCI, V37, P453
[2]  
BLUM A, 1988, P 1 ANN WORKSH COMP, P00009
[3]  
CHEN S, 1991, IEEE T NEURAL NETWOR, V2, P144
[4]  
Haykin S, 1998, NEURAL NETWORKS COMP
[5]   NEURAL NETWORKS AND PHYSICAL SYSTEMS WITH EMERGENT COLLECTIVE COMPUTATIONAL ABILITIES [J].
HOPFIELD, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (08) :2554-2558
[6]  
Hornik K., 1992, ARTIFICIAL NEURAL NE
[7]   NEURAL NETWORKS FOR CONTROL-SYSTEMS - A SURVEY [J].
HUNT, KJ ;
SBARBARO, D ;
ZBIKOWSKI, R ;
GAWTHROP, PJ .
AUTOMATICA, 1992, 28 (06) :1083-1112
[8]   Progress in supervised neural networks [J].
Hush, Don R. ;
Horne, Bill G. .
IEEE SIGNAL PROCESSING MAGAZINE, 1993, 10 (01) :8-39
[9]  
Narendra K S, 1990, IEEE Trans Neural Netw, V1, P4, DOI 10.1109/72.80202
[10]   GRADIENT METHODS FOR THE OPTIMIZATION OF DYNAMIC-SYSTEMS CONTAINING NEURAL NETWORKS [J].
NARENDRA, KS ;
PARTHASARATHY, K .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :252-262