Duality of constacyclic codes of prime power length over the finite non-commutative chain ring Fpm[u,θ]/⟨u2⟩

被引:0
作者
Phuto, Jirayu [1 ]
Klin-eam, Chakkrid [1 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
关键词
Left constacyclic codes; Linear complementary dual codes; Non-commutative rings; Repeated-root codes; Self-dual codes; CYCLIC CODES;
D O I
10.1016/j.disc.2022.112856
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R = F-p(m)[u,theta]/< u(2)> where theta is an automorphism of F-pm but it is not the identity. The list of (left and right) alpha-constacyclic codes of length p(s) over R is provided where theta(alpha) = alpha. The self-dual alpha-constacyclic codes are given. In addition, we derive the condition of LCD codes for those codes. For the remaining result, the condition of self-orthogonal left alpha- constacyclic codes is also obtained. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 31 条
  • [21] NEGACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm
    Klin-Eam, Chakkrid
    Phuto, Jirayu
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1385 - 1422
  • [22] ON σ-SELF-ORTHOGONAL CONSTACYCLIC CODES OVER Fpm + uFPm
    Liu, Hongwei
    Liu, Jingge
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (03) : 643 - 665
  • [23] SOME CLASSES OF REPEATED-ROOT CONSTACYCLIC CODES OVER Fpm + uFpm + u2Fpm
    Liu, Xiusheng
    Xu, Xiaofang
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 853 - 866
  • [24] LINEAR CODES WITH COMPLEMENTARY DUALS
    MASSEY, JL
    [J]. DISCRETE MATHEMATICS, 1992, 106 : 337 - 342
  • [25] McDonald B. R., 1974, FINITE RINGS IDENTIT
  • [26] Pless V., 1972, Discrete Mathematics, V3, P209, DOI 10.1016/0012-365X(72)90034-9
  • [27] On Generalized Reed-Solomon Codes Over Commutative and Noncommutative Rings
    Quintin, Guillaume
    Barbier, Morgan
    Chabot, Christophe
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5882 - 5897
  • [28] POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS
    REED, IS
    SOLOMON, G
    [J]. JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (02): : 300 - 304
  • [29] Cyclic codes over a non-commutative finite chain ring
    Sobhani, R.
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (03): : 519 - 530
  • [30] REPEATED-ROOT CYCLIC CODES
    VANLINT, JH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) : 343 - 345