D4-Modules

被引:28
作者
Ding, Nanqing [1 ]
Ibrahim, Yasser [2 ]
Yousif, Mohamed [3 ]
Zhou, Yiqiang [4 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
[2] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[3] Ohio State Univ, Dept Math, Lima, OH 45804 USA
[4] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Clean module; D3-module; D4-module; D4-cover; dual-square-free module; exchange property; lifting module; quasi-projective module; direct-projective module; pseudo-projective module; quasi-discrete module; pseudo-discrete module; UNISERIAL RINGS; EXCHANGE PROPERTY; DISCRETE MODULES; REPRESENTATIONS;
D O I
10.1142/S0219498817501663
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A module M is called a D4-module if, whenever A and B are submodules of M with M = A circle plus B and f : A -> B is a homomorphism with Imf subset of(circle plus) B, we have kerf subset of(circle plus) A. The class of D4-modules contains the D3-modules as well as the dual-square-free (DSF) modules. Furthermore, a D4-module M is called pseudo-discrete if M is also a lifting module. In this paper, we study the D4-, the DSF, and the pseudo-discrete modules, and show that a pseudo-discrete module is clean iff it has the finite exchange property iff it has the full exchange property.
引用
收藏
页数:25
相关论文
共 36 条
[1]   ADS modules [J].
Alahmadi, Adel ;
Jain, S. K. ;
Leroy, Andre .
JOURNAL OF ALGEBRA, 2012, 352 (01) :215-222
[2]  
[Anonymous], 1990, CONTINUOUS DISCRETE, DOI DOI 10.1017/CBO9780511600692
[3]  
[Anonymous], 2003, CAMBRIDGE TRACTS MAT, DOI DOI 10.1017/CBO9780511546525
[4]  
Baba Y., 2009, CLASSICAL ARTINIAN R
[5]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI [10.1090/S0002-9947-1960-0157984-8, DOI 10.1090/S0002-9947-1960-0157984-8]
[6]   SOME CHARACTERIZATIONS OF UNISERIAL RINGS [J].
BYRD, KA .
MATHEMATISCHE ANNALEN, 1970, 186 (03) :163-&
[7]   Continuous modules are clean [J].
Camillo, V. P. ;
Khurana, D. ;
Lam, T. Y. ;
Nicholson, W. K. ;
Zhou, Y. .
JOURNAL OF ALGEBRA, 2006, 304 (01) :94-111
[8]  
Clark J, 2006, FRONT MATH, P1
[9]  
Ding N., COMM ALGEBR IN PRESS
[10]   Rings and modules which are stable under automorphisms of their injective hulls [J].
Er, Noyan ;
Singh, Surjeet ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA, 2013, 379 :223-229