Mining spatiotemporal co-occurrence patterns in solar datasets

被引:10
作者
Aydin, B. [1 ]
Kempton, D. [1 ]
Akkineni, V. [1 ]
Angryk, R. [1 ]
Pillai, K. G. [2 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
基金
美国国家科学基金会;
关键词
Spatiotemporal co-occurrence; Frequent pattern mining; Solar data mining; Spatiotemporal indexing; DATA SETS; TRAJECTORIES; DISCOVERY;
D O I
10.1016/j.ascom.2015.10.003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We address the problem of mining spatiotemporal co-occurrence patterns (STCOPs) in solar datasets with extended polygon-based geometric representations. Specifically designed spatiotemporal indexing techniques are used in the mining of STCOPs. These include versions of two well-known spatiotemporal trajectory indexing techniques: the scalable and efficient trajectory index and Chebyshev polynomial indexing. We present a framework, STCOP-MINER, implementing a filter-and-refine STCOP mining algorithm, with the indexing techniques mentioned for efficiently performing data analysis. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 144
页数:9
相关论文
共 24 条
[21]  
Pillai K.G., 2013, P 21 ACM SIGSPATIAL, P104
[22]   Spatio-temporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions [J].
Pillai, Karthik Ganesan ;
Angryk, Rafal A. ;
Banda, Juan M. ;
Schuh, Michael A. ;
Wylie, Tim .
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, :805-812
[23]  
Shekhar S, 2001, LECT NOTES COMPUT SC, V2121, P236
[24]  
Tao Y., 2001, Proc. of the Intl. Conf. on Very Large Data Bases (VLDB), P431