The landscape adaptive particle swarm optimizer

被引:41
作者
Yisu, Jin
Knowles, Joshua
Hongmei, Lu
Liang, Yizeng
Kell, Douglas B.
机构
[1] Univ Manchester, Sch Chem, Manchester M60 1QD, Lancs, England
[2] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
基金
英国生物技术与生命科学研究理事会;
关键词
particle swarm optimization; LAPSO; evolution strategy;
D O I
10.1016/j.asoc.2007.01.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several modified particle swarm optimizers are proposed in this paper. In DVPSO, a distribution vector is used in the update of velocity. This vector is adjusted automatically according to the distribution of particles in each dimension. In COPSO, the probabilistic use of a 'crossing over' update is introduced to escape from local minima. The landscape adaptive particle swarm optimizer (LAPSO) combines these two schemes with the aim of achieving more robust and efficient search. Empirical performance comparisons between these new modified PSO methods, and also the inertia weight PSO (IFPSO), the constriction factor PSO (CFPSO) and a covariance matrix adaptation evolution strategy (CMAES) are presented on several benchmark problems. All the experimental results show that LAPSO is an efficient method to escape from convergence to local optima and approaches the global optimum rapidly on the problems used. (C) 2007 Elsevier B. V. All rights reserved.
引用
收藏
页码:295 / 304
页数:10
相关论文
共 36 条
[31]  
TSAIRFWU L, 2006, 16 INT S METH INT SY
[32]   A study of particle swarm optimization particle trajectories [J].
van den Bergh, F ;
Engelbrecht, AP .
INFORMATION SCIENCES, 2006, 176 (08) :937-971
[33]  
van den Bergh F., 2001, Proceedings of the Genetic and Evolutionary Computation Conference, P892, DOI 10.5555/2955239.2955400
[34]  
XU JJ, 2005, 19 IEEE INT PAR DIST, V6, P193
[35]  
Yasuda K, 2003, IEEE SYS MAN CYBERN, P1554
[36]   On the convergence analysis and parameter selection in particle swarm optimization [J].
Zheng, YL ;
Ma, LH ;
Zhang, LY ;
Qian, JX .
2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, :1802-1807