Preconditioning highly indefinite and nonsymmetric matrices

被引:97
作者
Benzi, M [1 ]
Haws, JC
Tuma, M
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
D O I
10.1137/S1064827599361308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Standard preconditioners, like incomplete factorizations, perform well when the coefficient matrix is diagonally dominant, but often fail on general sparse matrices. We experiment with nonsymmetric permutations and scalings aimed at placing large entries on the diagonal in the context of preconditioning for general sparse matrices. The permutations and scalings are those developed by Olschowka and Neumaier [Linear Algebra Appl., 240 (1996), pp. 131-151] and by Duff and Koster [SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889-901; Tech report Ral-Tr-99-030, Rutherford Appleton Laboratory, Chilton, UK, 1999]. We target highly indefinite, nonsymmetric problems that cause difficulties for preconditioned iterative solvers. Our numerical experiments indicate that the reliability and performance of preconditioned iterative solvers are greatly enhanced by such preprocessing.
引用
收藏
页码:1333 / 1353
页数:21
相关论文
共 41 条
[1]  
[Anonymous], MATR MARK
[2]   An MPI implementation of the SPAI preconditioner on the T3E [J].
Barnard, ST ;
Bernardo, LM ;
Simon, HD .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 1999, 13 (02) :107-123
[3]   Orderings for factorized sparse approximate inverse preconditioners [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05) :1851-1868
[4]   Robust approximate inverse preconditioning for the conjugate gradient method [J].
Benzi, M ;
Cullum, JK ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (04) :1318-1332
[5]   A comparative study of sparse approximate inverse preconditioners [J].
Benzi, M ;
Tuma, M .
APPLIED NUMERICAL MATHEMATICS, 1999, 30 (2-3) :305-340
[6]   Orderings for incomplete factorization preconditioning of nonsymmetric problems [J].
Benzi, M ;
Szyld, DB ;
Van Duin, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1652-1670
[7]   A sparse approximate inverse preconditioner for nonsymmetric linear systems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :968-994
[8]   A sparse approximate inverse preconditioner for the conjugate gradient method [J].
Benzi, M ;
Meyer, CD ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05) :1135-1149
[9]  
BOMHOF W, UNPUB NUMER LINEAR A
[10]   Ordering, anisotropy, and factored sparse approximate inverses [J].
Bridson, R ;
Tang, WP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (03) :867-882