State estimation for piecewise affine, discrete time systems with bounded disturbances

被引:7
作者
Rakovic, SV [1 ]
Mayne, DQ [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
set membership; state estimation; piecewise affine systems; uncertain systems; bounded disturbances;
D O I
10.1109/CDC.2004.1429264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of state estimation for piecewise affine, discrete time systems with bounded disturbances is considered. It is shown that the state lies in a closed uncertainty set that is determined by the available observations and that evolves in time. The uncertainty set is characterised and a recursive algorithm for its computation is presented. Recursive algorithms are proposed for filtering prediction and smoothing problems.
引用
收藏
页码:3557 / 3562
页数:6
相关论文
共 27 条
[1]  
Alamo T, 2003, P 42 IEEE C DEC CONT
[2]  
[Anonymous], 1979, MATH SCI ENG
[3]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[4]  
Aubin JP., 1991, Viability Theory
[5]   OPTIMUM PERFORMANCE LEVELS FOR MINIMAX FILTERS, PREDICTORS AND SMOOTHERS [J].
BASAR, T .
SYSTEMS & CONTROL LETTERS, 1991, 16 (05) :309-317
[6]  
Bertsekas D. P., 1971, THESIS MIT
[7]   RECURSIVE STATE ESTIMATION FOR A SET-MEMBERSHIP DESCRIPTION OF UNCERTAINTY [J].
BERTSEKAS, DP ;
RHODES, IB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) :117-+
[8]  
Chernousko F., 1994, STATE ESTIMATION DYN
[9]   Optimal Ellipsoidal Estimation of Dynamic Systems Subject to Uncertain Disturbances [J].
F. L. Chernousko .
Cybernetics and Systems Analysis, 2002, 38 (2) :221-229
[10]  
CHERNOUSKO FL, 1988, ESTIMATION PHASE STA