Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses

被引:37
作者
Huang, H. [1 ,2 ]
Sivayoganathan, M. [1 ,2 ]
Duley, W. W. [1 ,3 ]
Zhou, Y. [1 ,2 ]
机构
[1] Univ Waterloo, Ctr Adv Mat Joining, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Femtosecond laser; Localized heating; Localized surface plasmon; GOLD NANOPARTICLES; ABLATION; CLUSTERS; STORAGE; MEMORY;
D O I
10.1016/j.apsusc.2015.01.086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly localized heating can be obtained in plasmonic nanomaterials using laser excitation but the high fluences required often produce unacceptable damage in and near irradiated components and structures. In this work we show that plasmonic nanostructures involving aggregated Ag nanoparticles (Ag NPs) can be heated effectively without attendant damage to the surrounding material when these structures are irradiated with many overlapping femtosecond (fs) laser pulses at very low fluence. Under these conditions, the effectiveness of heating is such that the temperature of 50 nm Ag NPs can be raised to their melting point from room temperature. Aggregates of these NPs are then observed to grow into larger spherical particles as laser heating continues. Imaging of these materials shows that the initiation of melting in individual Ag NPs depends on the local geometry surrounding each NP and on the polarization of the incident laser radiation. Finite difference time domain (FDTD) simulations indicate that melting is triggered by localized surface plasmon (LSP)-induced electric field enhancement at "hotspots". (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:392 / 398
页数:7
相关论文
共 28 条
[1]   Molecular Dynamics Simulation of Sintering and Surface Premelting of Silver Nanoparticles [J].
Alarifi, H. A. ;
Atis, M. ;
Ozdogan, C. ;
Hu, A. ;
Yavuz, M. ;
Zhou, Y. .
MATERIALS TRANSACTIONS, 2013, 54 (06) :884-889
[3]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[4]   Tunable light trapping for solar cells using localized surface plasmons [J].
Beck, F. J. ;
Polman, A. ;
Catchpole, K. R. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[5]   Plasma Mediated off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation [J].
Boulais, Etienne ;
Lachaine, Remi ;
Meunier, Michel .
NANO LETTERS, 2012, 12 (09) :4763-4769
[6]   Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography [J].
Chu, Cheng Hung ;
Shiue, Chiun Da ;
Cheng, Hsuen Wei ;
Tseng, Ming Lun ;
Chiang, Hai-Pang ;
Mansuripur, Masud ;
Tsai, Din Ping .
OPTICS EXPRESS, 2010, 18 (17) :18383-18393
[7]   High intensity laser absorption by gases of atomic clusters [J].
Ditmire, T ;
Smith, RA ;
Tisch, JWG ;
Hutchinson, MHR .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3121-3124
[8]   Ion and electron emission from silver nanoparticles in intense laser fields [J].
Döppner, T ;
Fennel, T ;
Radcliffe, P ;
Tiggesbäumker, J ;
Meiwes-Broer, KH .
PHYSICAL REVIEW A, 2006, 73 (03)
[9]   Electron emission from films of Ag and Au nanoparticles excited by a femtosecond pump-probe laser [J].
Gloskovskii, A. ;
Valdaitsev, D. A. ;
Cinchetti, M. ;
Nepijko, S. A. ;
Lange, J. ;
Aeschlimann, M. ;
Bauer, M. ;
Klimenkov, M. ;
Viduta, L. V. ;
Tomchuk, P. M. ;
Schoenhense, G. .
PHYSICAL REVIEW B, 2008, 77 (19)
[10]   Plasmonic Near-Electric Field Enhancement Effects in Ultrafast Photoelectron Emission: Correlated Spatial and Laser Polarization Microscopy Studies of Individual Ag Nanocubes [J].
Grubisic, Andrej ;
Ringe, Emilie ;
Cobley, Claire M. ;
Xia, Younan ;
Marks, Laurence D. ;
Van Duyne, Richard P. ;
Nesbitt, David J. .
NANO LETTERS, 2012, 12 (09) :4823-4829