Efficient similarity search within user-specified projective subspaces

被引:7
作者
Houle, Michael E. [1 ]
Ma, Xiguo [2 ]
Oria, Vincent [3 ]
Sun, Jichao [3 ]
机构
[1] Natl Inst Informat, Tokyo 1018430, Japan
[2] Google Mt View, Mountain View, CA 94043 USA
[3] New Jersey Inst Technol, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Subspace similarity search; Multi-step search; Intrinsic dimensionality;
D O I
10.1016/j.is.2016.01.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many applications - such as content-based image retrieval, subspace clustering, and feature selection - may benefit from efficient subspace similarity search. Given a query object, the goal of subspace similarity search is to retrieve the most similar objects from the database, where the similarity distance is defined over an arbitrary subset of dimensions (or features) - that is, an arbitrary axis-aligned projective subspace - specified along with the query. Though much effort has been spent on similarity search in fixed subspaces, relatively little attention has been given to the problem of similarity search when the dimensions are specified at query time. In this paper, we propose new methods for the subspace similarity search problem for real-valued data. Extensive experiments are provided showing very competitive performance relative to state-of-the-art solutions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2 / 14
页数:13
相关论文
共 27 条
[1]  
Asuncion A., 2007, Uci machine learning repository
[2]  
Behrisch M., 2010, P 2014 IEEE C VIS AN, P43
[3]  
Bernecker T, 2010, LECT NOTES COMPUT SC, V6187, P555, DOI 10.1007/978-3-642-13818-8_38
[4]   Subspace Similarity Search Using the Ideas of Ranking and Top-k Retrieval [J].
Bernecker, Thomas ;
Emrich, Tobias ;
Graf, Franz ;
Kriegel, Hans-Peter ;
Kroeger, Peer ;
Renz, Matthias ;
Schubert, Erich ;
Zimek, Arthur .
2010 IEEE 26TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDE 2010), 2010, :4-9
[5]  
Beyer K, 1999, LECT NOTES COMPUT SC, V1540, P217
[6]  
Boujemaa N., 2001, P INT WORKSH MULT CO
[7]   TAIL OF THE HYPERGEOMETRIC DISTRIBUTION [J].
CHVATAL, V .
DISCRETE MATHEMATICS, 1979, 25 (03) :285-287
[8]   The Amsterdam Library of Object Images [J].
Geusebroek, JM ;
Burghouts, GJ ;
Smeulders, AWM .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (01) :103-112
[9]  
Guttman A., 1984, SIGMOD Record, V14, P47, DOI 10.1145/971697.602266
[10]   Interest Driven Navigation in Visualization [J].
Healey, Christopher G. ;
Dennis, Brent M. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (10) :1744-1756