Deep Reinforcement Learning-Based Adaptive Controller for Trajectory Tracking and Altitude Control of an Aerial Robot

被引:15
作者
Barzegar, Ali [1 ]
Lee, Deok-Jin [1 ]
机构
[1] Jeonbuk Natl Univ, Sch Mech Engn, Jeonju 54896, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
基金
新加坡国家研究基金会;
关键词
RL robot control; RL model predictive control; reinforcement learning for vehicle control; PID reinforcement learning; RL adaptive PID; reinforcement learning drone control; MODEL-PREDICTIVE CONTROL; DESIGN;
D O I
10.3390/app12094764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This research study presents a new adaptive attitude and altitude controller for an aerial robot. The proposed controlling approach employs a reinforcement learning-based algorithm to actively estimate the controller parameters of the aerial robot. In dealing with highly nonlinear systems and parameter uncertainty, the proposed RL-based adaptive control algorithm has advantages over some types of standard control approaches. When compared to the conventional proportional integral derivative (PID) controllers, the results of the numerical simulation demonstrate the effectiveness of this intelligent control strategy, which can improve the control performance of the whole system, resulting in accurate trajectory tracking and altitude control of the vehicle.
引用
收藏
页数:23
相关论文
共 53 条
[1]   PI-Type Controllers and σ-Δ Modulation for Saturated DC-DC Buck Power Converters [J].
Aguilar-Ibanez, Carlos ;
Moreno-Valenzuela, Javier ;
Garcia-Alarcon, O. ;
Martinez-Lopez, Mizraim ;
Angel Acosta, Jose ;
Suarez-Castanon, Miguel S. .
IEEE ACCESS, 2021, 9 :20346-20357
[2]  
[Anonymous], 1998, P 15 NATIONALTENTH C
[3]   The Regulation of an Electric Oven and an Inverted Pendulum [J].
Balcazar, Ricardo ;
Rubio, Jose de Jesus ;
Orozco, Eduardo ;
Andres Cordova, Daniel ;
Ochoa, Genaro ;
Garcia, Enrique ;
Pacheco, Jaime ;
Juliana Gutierrez, Guadalupe ;
Mujica-Vargas, Dante ;
Aguilar-Ibanez, Carlos .
SYMMETRY-BASEL, 2022, 14 (04)
[4]  
Barzegar Ali, 2014, International Journal of Information Technology and Computer Science, V6, P72, DOI 10.5815/ijitcs.2014.05.10
[5]  
Barzegar A., 2015, INT J HYBRID INF TEC, V8, P71, DOI [10.14257/ijhit.2015.8.12.05, DOI 10.14257/IJHIT.2015.8.12.05]
[6]   Design and Implementation of an Autonomous Electric Vehicle for Self-Driving Control under GNSS-Denied Environments [J].
Barzegar, Ali ;
Doukhi, Oualid ;
Lee, Deok-Jin .
APPLIED SCIENCES-BASEL, 2021, 11 (08)
[7]  
Barzegar A, 2020, INT C CONTR AUTOMAT, P750, DOI [10.23919/iccas50221.2020.9268233, 10.23919/ICCAS50221.2020.9268233]
[8]  
Bernstein A.V., P 10 INT C MACHINE V, V10696, P464
[9]  
Bohn E, 2019, INT CONF UNMAN AIRCR, P523, DOI [10.1109/ICUAS.2019.8798254, 10.1109/icuas.2019.8798254]
[10]   Reinforcement Learning, Fast and Slow [J].
Botvinick, Matthew ;
Ritter, Sam ;
Wang, Jane X. ;
Kurth-Nelson, Zeb ;
Blundell, Charles ;
Hassabis, Demis .
TRENDS IN COGNITIVE SCIENCES, 2019, 23 (05) :408-422