Effect of Oxidative Stress on Cardiovascular System in Response to Gravity

被引:33
作者
Takahashi, Ken [1 ]
Okumura, Hiroki [2 ]
Guo, Rui [1 ,3 ]
Naruse, Keiji [1 ]
机构
[1] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Physiol, Okayama 7008558, Japan
[2] Okayama Univ, Dept Med, Okayama 7008558, Japan
[3] Harbin Med Univ, Dept Cardiovasc Surg, Harbin 150001, Heilongjiang, Peoples R China
关键词
oxidative stress; reactive oxygen species; radiation; microgravity; HINDLIMB UNWEIGHTING RATS; SPACE RADIATION; SIMULATED MICROGRAVITY; MARS EXPLORATION; SKELETAL-MUSCLE; NITRIC-OXIDE; CELLULAR SENESCENCE; DISEASE MORTALITY; REDOX REGULATION; NADPH OXIDASES;
D O I
10.3390/ijms18071426
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Long-term habitation in space leads to physiological alterations such as bone loss, muscle atrophy, and cardiovascular deconditioning. Two predominant factors-namely space radiation and microgravity-have a crucial impact on oxidative stress in living organisms. Oxidative stress is also involved in the aging process, and plays important roles in the development of cardiovascular diseases including hypertension, left ventricular hypertrophy, and myocardial infarction. Here, we discuss the effects of space radiation, microgravity, and a combination of these two factors on oxidative stress. Future research may facilitate safer living in space by reducing the adverse effects of oxidative stress.
引用
收藏
页数:9
相关论文
共 76 条
[1]   The oxidative burst reaction in mammalian cells depends on gravity [J].
Adrian, Astrid ;
Schoppmann, Kathrin ;
Sromicki, Juri ;
Brungs, Sonja ;
von der Wiesche, Melanie ;
Hock, Bertold ;
Kolanus, Waldemar ;
Hemmersbach, Ruth ;
Ullrich, Oliver .
CELL COMMUNICATION AND SIGNALING, 2013, 11
[2]   YAP is essential for 3D organogenesis withstanding gravity [J].
Asaoka, Yoichi ;
Nishina, Hiroshi ;
Furutani-Seiki, Makoto .
DEVELOPMENT GROWTH & DIFFERENTIATION, 2017, 59 (01) :52-58
[3]   Effects of spaceflight on innate immune function and antioxidant gene expression [J].
Baqai, Farnaz P. ;
Gridley, Daila S. ;
Slater, James M. ;
Luo-Owen, Xian ;
Stodieck, Louis S. ;
Ferguson, Virginia ;
Chapes, Stephen K. ;
Pecaut, Michael J. .
JOURNAL OF APPLIED PHYSIOLOGY, 2009, 106 (06) :1935-1942
[4]   Microgravity as a model of ageing [J].
Biolo, G ;
Heer, M ;
Narici, M ;
Strollo, F .
CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2003, 6 (01) :31-40
[5]   Space radiation and cardiovascular disease risk [J].
Boerma, Marjan ;
Nelson, Gregory A. ;
Sridharan, Vijayalakshmi ;
Mao, Xiao-Wen ;
Koturbash, Igor ;
Hauer-Jensen, Martin .
WORLD JOURNAL OF CARDIOLOGY, 2015, 7 (12) :882-888
[6]   PHYSIOLOGICAL PROBLEMS OF SPACE TRAVEL [J].
BULLARD, RW .
ANNUAL REVIEW OF PHYSIOLOGY, 1972, 34 :205-&
[7]   Cardiovascular deconditioning: From autonomic nervous system to microvascular dysfunctions [J].
Coupe, M. ;
Fortrat, J. O. ;
Larina, I. ;
Gauquelin-Koch, G. ;
Gharib, C. ;
Custaud, M. A. .
RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2009, 169 :S10-S12
[8]   Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings [J].
Cucinotta, Francis A. ;
Durante, Marco .
LANCET ONCOLOGY, 2006, 7 (05) :431-435
[9]   No evidence for an increase in circulatory disease mortality in astronauts following space radiation exposures [J].
Cucinotta, Francis A. ;
Hamada, Nobuyuki ;
Little, Mark P. .
LIFE SCIENCES IN SPACE RESEARCH, 2016, 10 :53-56
[10]   REVIEW OF NASA APPROACH TO SPACE RADIATION RISK ASSESSMENTS FOR MARS EXPLORATION [J].
Cucinotta, Francis A. .
HEALTH PHYSICS, 2015, 108 (02) :131-142