Microwave synthesis of Fe-doped anatase TiO2/N-doped modified graphene composites with superior sodium storage properties

被引:6
作者
Wang, Shuaihao [1 ]
Zhu, Yuanyi [1 ,2 ]
Sun, Xuejiao [1 ]
An, Shengli [1 ]
Cui, Jinlong [1 ]
Zhang, Yongqiang [1 ]
He, Wenxiu [1 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Chem & Chem Engn, Baotou 014010, Peoples R China
[2] Guangxi Guanfan Investment Co Ltd, Guigang 537100, Peoples R China
基金
中国国家自然科学基金;
关键词
Na-ion batteries; N-doped modified graphene; Fe-doped anatase TiO2; Anodes; TIO2; NANOPARTICLES; ANODE MATERIALS; LITHIUM-ION; PHOTOCATALYTIC ACTIVITY; SOL-GEL; NANOSHEETS; NANOTUBES; HYBRID; NANOFIBERS; STABILITY;
D O I
10.1016/j.diamond.2021.108442
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Exploring advanced anodes for Na-ion batteries (NIBs) remains challenging. This paper reports a simple solgel-microwave two-step route to synthesize Fe-doped anatase TiO2/N-doped modified graphene (FTiO2/NRGO) composites with superior performance in NIBs. The doping of low-valence Fe3+ can generate vacancies in the oxygen sub-lattice of anatase TiO2, thereby improving electronic conductivity. Furthermore, the introduction of N-doped graphene (NRGO) can further enhance the structural stability of the composites and facilitate the ions/Na+ diffusion. With this strategy, the FTiO2/NRGO electrode delivers outstanding reversible capacities (161.3 mAh g(-1) at 0.1 A g(-1) over 300 cycles) and superior rate performance for NIBs (102.1 mAh g(-1) at 2 A g(-1)).
引用
收藏
页数:8
相关论文
共 55 条
[1]   Effect of FeCl3 on the photocatalytic processes initiated by UVa and vis light in the presence of TiO2-P25 [J].
Adamek, Ewa ;
Baran, Wojciech ;
Sobczak, Andrzej .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 172 :136-144
[2]   Comparative Solid Phase Photocatalytic Degradation of Polythene Films with Doped and Undoped TiO2 Nanoparticles [J].
Asghar, Wasim ;
Qazi, Ishtiaq A. ;
Ilyas, Hassan ;
Khan, Aftab Ahmad ;
Awan, M. Ali ;
Aslam, M. Rizwan .
JOURNAL OF NANOMATERIALS, 2011, 2011
[3]   N-doped graphene wrapped SnP2O7 for sodium storage with high pseudocapacitance contribution [J].
Bai, Lichong ;
Pang, Xiaozhe ;
Sun, Yanfang ;
Zhang, Xiao ;
Guo, Jinxue .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
[4]   Li+ Pre-Insertion Leads to Formation of Solid Electrolyte Interface on TiO2 Nanotubes That Enables High-Performance Anodes for Sodium Ion Batteries [J].
Cha, Gihoon ;
Mohajernia, Shiva ;
Nhat Truong Nguyen ;
Mazare, Anca ;
Denisov, Nikita ;
Hwang, Imgon ;
Schmuki, Patrik .
ADVANCED ENERGY MATERIALS, 2020, 10 (06)
[5]   CNTs-C@TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries [J].
Chen, Jin ;
Wang, Enqi ;
Mu, Jiechen ;
Ai, Bing ;
Zhang, Tiezhu ;
Ge, Wenqing ;
Zhang, Lipeng .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (01) :592-604
[6]   Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies [J].
Chen, Jun ;
Ding, Zhiying ;
Wang, Chao ;
Hou, Hongshuai ;
Zhang, Yan ;
Wang, Chiwei ;
Zou, Guoqiang ;
Ji, Xiaobo .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (14) :9142-9151
[7]   3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage [J].
Fan, Xiao-Yong ;
Han, Jiaxing ;
Ding, Yuan-Li ;
Deng, Ya-Ping ;
Luo, Dan ;
Zeng, Xiangtian ;
Jiang, Zhen ;
Gou, Lei ;
Li, Dong-Lin ;
Chen, Zhongwei .
ADVANCED ENERGY MATERIALS, 2019, 9 (28)
[8]   High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries [J].
Ge, Yeqian ;
Jiang, Han ;
Zhu, Jiadeng ;
Lu, Yao ;
Chen, Chen ;
Hu, Yi ;
Qiu, Yiping ;
Zhang, Xiangwu .
ELECTROCHIMICA ACTA, 2015, 157 :142-148
[9]   Iron-Doped Cauliflower-Like Rutile TiO2 with Superior Sodium Storage Properties [J].
He, Hanna ;
Sun, Dan ;
Zhang, Qi ;
Fu, Fang ;
Tang, Yougen ;
Guo, Jun ;
Shao, Minhua ;
Wang, Haiyan .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (07) :6093-6103
[10]   A surface chemistry assistant strategy to high power/energy density and cost-effective cathode for sodium ion battery [J].
Hou, Jie ;
Wang, Wei ;
Feng, Pingyuan ;
Wang, Kangli ;
Jiang, Kai .
JOURNAL OF POWER SOURCES, 2020, 453