MMSS: Multi-modal story-oriented video summarization

被引:7
|
作者
Pan, JY [1 ]
Yang, H [1 ]
Faloutsos, C [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
来源
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2004年
关键词
D O I
10.1109/ICDM.2004.10033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose multi-modal story-oriented video summarization (MMSS) which, unlike previous works that use fine-tuned, domain-specific heuristics, provides a domain-independent, graph-based framework. MMSS uncovers correlation between information of different modalities which gives meaningful story-oriented news video summaries. MMSS can also be applied for video retrieval, giving performance that matches the best traditional retrieval techniques (OKAPI and LSI), with no fine-tuned heuristics such as tf/idf.
引用
收藏
页码:491 / 494
页数:4
相关论文
共 50 条
  • [21] Sound of Story: Multi-modal Storytelling with Audio
    Bae, Jaeyeon
    Jeong, Seokhoon
    Kong, Seokun
    Han, Namgi
    Lee, Jae-Yon
    Kim, Hyounghun
    Kim, Taehwan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 13467 - 13479
  • [22] ENDOSCOPY VIDEO SUMMARIZATION BASED ON MULTI-MODAL DESCRIPTORS AND POSSIBILISTIC UNSUPERVISED LEARNING AND FEATURE SUBSET WEIGHTING
    Ben Ismail, Mohamed Maher
    Bchir, Ouiem
    Emam, Ahmed Z.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2014, 20 (03): : 381 - 402
  • [23] Multi-Modal Multi-Action Video Recognition
    Shi, Zhensheng
    Liang, Ju
    Li, Qianqian
    Zheng, Haiyong
    Gu, Zhaorui
    Dong, Junyu
    Zheng, Bing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 13658 - 13667
  • [24] MMSS: Multi-modal Sharable and Specific Feature Learning for RGB-D Object Recognition
    Wang, Anran
    Cai, Jianfei
    Lu, Jiwen
    Cham, Tat-Jen
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1125 - 1133
  • [25] Multi-modal Sentence Summarization with Modality Attention and Image Filtering
    Li, Haoran
    Zhu, Junnan
    Liu, Tianshang
    Zhang, Jiajun
    Zong, Chengqing
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 4152 - 4158
  • [26] Extractive summarization of documents with images based on multi-modal RNN
    Chen, Jingqiang
    Hai Zhuge
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 99 : 186 - 196
  • [27] Multi-modal humor segment prediction in video
    Yang, Zekun
    Nakashima, Yuta
    Takemura, Haruo
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2389 - 2398
  • [28] A Multi-modal System for Video Semantic Understanding
    Lv, Zhengwei
    Lei, Tao
    Liang, Xiao
    Shi, Zhizhong
    Liu, Duoxing
    CCKS 2021 - EVALUATION TRACK, 2022, 1553 : 34 - 43
  • [29] Hierarchically multi-modal indexing of soccer video
    Liu, Yuchi
    Wu, Lingda
    Lei, Zhen
    Xie, Yuxiang
    12TH INTERNATIONAL MULTI-MEDIA MODELLING CONFERENCE PROCEEDINGS, 2006, : 393 - 396
  • [30] Multi-modal Dependency Tree for Video Captioning
    Zhao, Wentian
    Wu, Xinxiao
    Luo, Jiebo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34