Power laws in the dynamic hysteresis of quantum nonlinear photonic resonators

被引:79
作者
Casteels, W. [1 ,2 ]
Storme, F. [1 ,2 ]
Le Boite, A. [1 ,2 ,3 ,4 ]
Ciuti, C. [1 ,2 ]
机构
[1] Univ Paris 07, Lab Mat & Phenomenes Quant, Batiment Condorcet,10 Rue Alice Domon & Leonie Du, F-75205 Paris 13, France
[2] CNRS, Batiment Condorcet,10 Rue Alice Domon & Leonie Du, F-75205 Paris 13, France
[3] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[4] Univ Ulm, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
关键词
OPTICAL BISTABILITY; PHASE-TRANSITION; TUNNELING RATES;
D O I
10.1103/PhysRevA.93.033824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore theoretically the physics of dynamic hysteresis for driven-dissipative nonlinear photonic resonators. In the regime where the semiclassical mean-field theory predicts bistability, the exact steady-state density matrix is known to be unique, being a statistical mixture of two states; in particular, no static hysteresis cycle of the excited population occurs as a function of the driving intensity. Here, we predict that in the quantum regime a dynamic hysteresis with a rich phenomenology does appear when sweeping the driving amplitude in a finite time. The hysteresis area as a function of the sweep time reveals a double power-law decay, with a behavior qualitatively different from the mean-field predictions. The dynamic hysteresis power-law in the slow sweep limit defines a characteristic time, which depends dramatically on the size of the nonlinearity and on the frequency detuning between the driving and the resonator. In the strong nonlinearity regime, the characteristic time oscillates as a function of the intrinsic system parameters due to multiphotonic resonances. We show that the dynamic hysteresis for the considered class of driven-dissipative systems is due to a nonadiabatic response region with connections to the Kibble-Zurek mechanism for quenched phase transitions. We also consider the case of two coupled driven-dissipative nonlinear resonators, showing that dynamic hysteresis and power-law behavior occur also in the presence of correlations between resonators. Our theoretical predictions can be explored in a broad variety of physical systems, e.g., circuit QED superconducting resonators and semiconductor optical microcavities.
引用
收藏
页数:9
相关论文
共 64 条
[1]   Effect of a noisy driving field on a bistable polariton system [J].
Abbaspour, H. ;
Sallen, G. ;
Trebaol, S. ;
Morier-Genoud, F. ;
Portella-Oberli, M. T. ;
Deveaud, B. .
PHYSICAL REVIEW B, 2015, 92 (16)
[2]   Stochastic Resonance in Collective Exciton-Polariton Excitations inside a GaAs Microcavity [J].
Abbaspour, H. ;
Trebaol, S. ;
Morier-Genoud, F. ;
Portella-Oberli, M. T. ;
Deveaud, B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[3]   LANDAU-ZENER TRANSITION TO A DECAYING LEVEL [J].
AKULIN, VM ;
SCHLEICH, WP .
PHYSICAL REVIEW A, 1992, 46 (07) :4110-4113
[4]   Exciton-polariton spin switches [J].
Amo, A. ;
Liew, T. C. H. ;
Adrados, C. ;
Houdre, R. ;
Giacobino, E. ;
Kavokin, A. V. ;
Bramati, A. .
NATURE PHOTONICS, 2010, 4 (06) :361-366
[5]   Optical bistability in semiconductor microcavities [J].
Baas, A ;
Karr, JP ;
Eleuch, H ;
Giacobino, E .
PHYSICAL REVIEW A, 2004, 69 (02) :8
[6]   Optical Bistability in a GaAs-Based Polariton Diode [J].
Bajoni, Daniele ;
Semenova, Elizaveta ;
Lemaitre, Aristide ;
Bouchoule, Sophie ;
Wertz, Esther ;
Senellart, Pascale ;
Barbay, Sylvain ;
Kuszelewicz, Robert ;
Bloch, Jacqueline .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[7]   All-optical polariton transistor [J].
Ballarini, D. ;
De Giorgi, M. ;
Cancellieri, E. ;
Houdre, R. ;
Giacobino, E. ;
Cingolani, R. ;
Bramati, A. ;
Gigli, G. ;
Sanvitto, D. .
NATURE COMMUNICATIONS, 2013, 4
[8]  
BOAKNIN E, ARXIVCONDMAT0702445
[9]   1ST-ORDER AND 2ND-ORDER PHASE-TRANSITIONS IN THE DICKE MODEL - RELATION TO OPTICAL BISTABILITY [J].
BOWDEN, CM ;
SUNG, CC .
PHYSICAL REVIEW A, 1979, 19 (06) :2392-2401
[10]   Macroscopic Tunneling of a Membrane in an Optomechanical Double-Well Potential [J].
Buchmann, L. F. ;
Zhang, L. ;
Chiruvelli, A. ;
Meystre, P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)