On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition

被引:219
作者
Xiao, Yuelong [1 ]
Xin, Zhouping
机构
[1] Xiangtan Univ, Xiangtan, Peoples R China
[2] Chinese Univ Hong Kong, Sha Tin 100083, Hong Kong, Peoples R China
关键词
D O I
10.1002/cpa.20187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1027 / 1055
页数:29
相关论文
共 53 条
[1]   Effective boundary conditions for laminar flows over periodic rough boundaries [J].
Achdou, Y ;
Pironneau, O ;
Valentin, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :187-218
[3]  
Bänsch E, 2001, NUMER MATH, V88, P203, DOI 10.1007/s002110000225
[4]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[5]  
Bourguignon J., 1974, J FUNCT ANAL, V15, P341, DOI DOI 10.1016/0022-1236(74)90027-5
[6]   The second grade fluid and averaged Euler equations with Navier-slip boundary conditions [J].
Busuioc, AV ;
Ratiu, TS .
NONLINEARITY, 2003, 16 (03) :1119-1149
[7]   Vector calculus and the topology of domains in 3-space [J].
Cantarella, J ;
DeTurck, D ;
Gluck, H .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (05) :409-442
[8]  
Cioranescu D, 1996, MATH METHOD APPL SCI, V19, P857, DOI 10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO
[9]  
2-D
[10]   On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions [J].
Clopeau, T ;
Mikelic, A ;
Robert, R .
NONLINEARITY, 1998, 11 (06) :1625-1636