TORSION OF RATIONAL ELLIPTIC CURVES OVER THE MAXIMAL ABELIAN EXTENSION OF Q

被引:7
作者
Chou, Michael [1 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
关键词
elliptic curves; torsion; abelian; extension; POINTS; NUMBER;
D O I
10.2140/pjm.2019.302.481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve defined over Q, and let Q(ab) be the maximal abelian extension of Q. In this article we classify the groups that can arise as E(Q(ab))(tors) up to isomorphism. The method illustrates techniques for finding explicit models of modular curves of mixed level structure. Moreover, we provide an explicit algorithm to compute E(Q(ab))(tors) for any elliptic curve E/Q.
引用
收藏
页码:481 / 509
页数:29
相关论文
共 20 条
[1]  
[Anonymous], 1992, Math. Notes
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
Bourdon A., 2016, PREPRINT
[4]   Torsion of rational elliptic curves over quartic Galois number fields [J].
Chou, Michael .
JOURNAL OF NUMBER THEORY, 2016, 160 :603-628
[5]  
Conrad K., 2012, PREPRINT
[6]   TORSION SUBGROUPS OF RATIONAL ELLIPTIC CURVES OVER THE COMPOSITUM OF ALL CUBIC FIELDS [J].
Daniels, Harris B. ;
Lozano-Robledo, Alvaro ;
Najman, Filip ;
Sutherland, Andrew V. .
MATHEMATICS OF COMPUTATION, 2018, 87 (309) :425-458
[7]  
Derickx M., 2019, SPORADIC CUBIC UNPUB
[9]  
Gonzalez-Jimenez E., 2016, PREPRINT
[10]   Elliptic curves with abelian division fields [J].
Gonzalez-Jimenez, Enrique ;
Lozano-Robledo, Alvaro .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) :835-859