Probabilistic Sparse Matching for Robust 3D/3D Fusion in Minimally Invasive Surgery

被引:8
作者
Neumann, Dominik [1 ,2 ]
Grbic, Sasa [1 ,3 ]
John, Matthias [4 ]
Navab, Nassir [3 ]
Hornegger, Joachim [2 ]
Ionasec, Razvan [5 ]
机构
[1] Siemens Corp Technol, Imaging & Comp Vis, Princeton, NJ 08540 USA
[2] Univ Erlangen Nurnberg, Dept Comp Sci, Pattern Recognit Lab, D-91058 Erlangen, Germany
[3] Tech Univ Munich, D-91058 Munich, Germany
[4] Siemens AG, Healthcare Sect, D-91031 Forchheim, Germany
[5] Siemens AG, Healthcare Sect, Comp Tomog, D-91031 Forchheim, Germany
关键词
Anatomical overlay; computed tomography (CT); model-based cardiac image registration; procedure guidance; AORTIC-VALVE IMPLANTATION; REGISTRATION METHODS; MUTUAL-INFORMATION; CARDIAC CT; TRANSCATHETER; HEART; SEGMENTATION; IMAGES; OPTIMIZATION; FEATURES;
D O I
10.1109/TMI.2014.2343936
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Classical surgery is being overtaken by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm computed tomography (CT) and C-arm fluoroscopy are routinely used in clinical practice for intraoperative guidance. However, due to constraints regarding acquisition time and device configuration, intraoperative modalities have limited soft tissue image quality and reliable assessment of the cardiac anatomy typically requires contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a probabilistic sparse matching approach to fuse high-quality preoperative CT images and nongated, noncontrast intraoperative C-arm CT images by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the preoperative CT and mapped to the intraoperative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments on 95 clinical datasets demonstrate that our model-based fusion approach has an average execution time of 1.56 s, while the accuracy of 5.48 mm between the anchor anatomy in both images lies within expert user confidence intervals. In direct comparison with image-to-image registration based on an open-source state-of-the-art medical imaging library and a recently proposed quasi-global, knowledge-driven multi-modal fusion approach for thoracic-abdominal images, our model-based method exhibits superior performance in terms of registration accuracy and robustness with respect to both target anatomy and anchor anatomy alignment errors.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 34 条
  • [1] [Anonymous], 2008, IEEE C COMP VIS PATT
  • [2] Chapman B., 2007, USING OPENMP PORTABL
  • [3] Complete valvular heart apparatus model from 4D cardiac CT
    Grbic, Sasa
    Ionasec, Razvan
    Vitanovski, Dime
    Voigt, Ingmar
    Wang, Yang
    Georgescu, Bogdan
    Navab, Nassir
    Comaniciu, Dorin
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (05) : 1003 - 1014
  • [4] Statistical shape models for 3D medical image segmentation: A review
    Heimann, Tobias
    Meinzer, Hans-Peter
    [J]. MEDICAL IMAGE ANALYSIS, 2009, 13 (04) : 543 - 563
  • [5] CLOSED-FORM SOLUTION OF ABSOLUTE ORIENTATION USING UNIT QUATERNIONS
    HORN, BKP
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04): : 629 - 642
  • [6] A global optimisation method for robust affine registration of brain images
    Jenkinson, M
    Smith, S
    [J]. MEDICAL IMAGE ANALYSIS, 2001, 5 (02) : 143 - 156
  • [7] Johnson H.J., 2013, The ITK Software Guide, Vthird
  • [8] Two-Year Outcomes after Transcatheter or Surgical Aortic-Valve Replacement
    Kodali, Susheel K.
    Williams, Mathew R.
    Smith, Craig R.
    Svensson, Lars G.
    Webb, John G.
    Makkar, Raj R.
    Fontana, Gregory P.
    Dewey, Todd M.
    Thourani, Vinod H.
    Pichard, Augusto D.
    Fischbein, Michael
    Szeto, Wilson Y.
    Lim, Scott
    Greason, Kevin L.
    Teirstein, Paul S.
    Malaisrie, S. Chris
    Douglas, Pamela S.
    Hahn, Rebecca T.
    Whisenant, Brian
    Zajarias, Alan
    Wang, Duolao
    Akin, Jodi J.
    Anderson, William N.
    Leon, Martin B.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (18) : 1686 - 1695
  • [9] US-Fluoroscopy Registration for Transcatheter Aortic Valve Implantation
    Lang, Pencilla
    Seslija, Petar
    Chu, Michael W. A.
    Bainbridge, Daniel
    Guiraudon, Gerard M.
    Jones, Douglas L.
    Peters, Terry M.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (05) : 1444 - 1453
  • [10] Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery.
    Leon, Martin B.
    Smith, Craig R.
    Mack, Michael
    Miller, D. Craig
    Moses, Jeffrey W.
    Svensson, Lars G.
    Tuzcu, E. Murat
    Webb, John G.
    Fontana, Gregory P.
    Makkar, Raj R.
    Brown, David L.
    Block, Peter C.
    Guyton, Robert A.
    Pichard, Augusto D.
    Bavaria, Joseph E.
    Herrmann, Howard C.
    Douglas, Pamela S.
    Petersen, John L.
    Akin, Jodi J.
    Anderson, William N.
    Wang, Duolao
    Pocock, Stuart
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (17) : 1597 - 1607