Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes

被引:16
作者
Ma, Xuedan [1 ]
Roslyak, Oleksiy [1 ,2 ]
Wang, Feng [1 ]
Duque, Juan G. [3 ]
Piryatinski, Andrei [2 ]
Doorn, Stephen K. [1 ]
Htoon, Han [1 ]
机构
[1] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp, Los Alamos, NM 87545 USA
关键词
carbon nanotubes; quantum-confined Stark effect; surface plasmons; photoluminescence; spectral diffusion; QUANTUM DOTS; FLUORESCENCE; EMISSION; PHOTOLUMINESCENCE; INTERMITTENCY; TEMPERATURE; PLASMONICS;
D O I
10.1021/nn504138m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study temporal evolution of photoluminescence (PL) spectra from individual single-walled carbon nanotubes (SWCNTs) at cryogenic and room temperatures. Sublinear and superlinear correlations between fluctuating PL spectral positions and line widths are observed at cryogenic and room temperatures, respectively. We develop a simple model to explain these two different spectral diffusion behaviors in the framework of quantum-confined Stark effect (QCSE) caused by surface charges trapped in the vicinity of SWCNTs. We show that the wave function properties of excitons, namely, localization at cryogenic temperature and delocalization at room temperature, play a critical role in defining sub- and superlinear correlations. Room temperature PL spectral positions and line widths of SWCNTs coupled to gold dimer nanoantennas on the other hand exhibit sublinear correlations, indicating that excitonic emission mainly originates from nanometer range regions and excitons appear to be localized. Our numerical simulations show that such apparent localization of excitons results from plasmonic confinement of excitation and an enhancement of decay rates in the gap of the dimer nanoantennas.
引用
收藏
页码:10613 / 10620
页数:8
相关论文
共 43 条
[1]   Suppression of Blinking and Enhanced Exciton Emission from Individual Carbon Nanotubes [J].
Ai, Nan ;
Walden-Newman, William ;
Song, Qiang ;
Kalliakos, Sokratis ;
Strauf, Stefan .
ACS NANO, 2011, 5 (04) :2664-2670
[2]  
[Anonymous], 2008, PHYS REV LETT
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]  
Bakker HJ, 2013, ULTRAFAST INFRARED VIBRATIONAL SPECTROSCOPY, P99
[5]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[6]   Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna [J].
Boehmler, Miriam ;
Hartmann, Nicolai ;
Georgi, Carsten ;
Hennrich, Frank ;
Green, Alexander A. ;
Hersam, Mark C. ;
Hartschuh, Achim .
OPTICS EXPRESS, 2010, 18 (16) :16443-16451
[7]   Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions [J].
Cognet, Laurent ;
Tsyboulski, Dmitri A. ;
Rocha, John-David R. ;
Doyle, Condell D. ;
Tour, James M. ;
Weisman, R. Bruce .
SCIENCE, 2007, 316 (5830) :1465-1468
[8]   Quantum-confined stark effect in single CdSe nanocrystallite quantum dots [J].
Empedocles, SA ;
Bawendi, MG .
SCIENCE, 1997, 278 (5346) :2114-2117
[9]   Non-Markovian decoherence of localized nanotube excitons by acoustic phonons [J].
Galland, Christophe ;
Hoegele, Alexander ;
Tuereci, Hakan E. ;
Imamoglu, Atac .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[10]  
Ghosh S, 2010, NAT NANOTECHNOL, V5, P443, DOI [10.1038/NNANO.2010.68, 10.1038/nnano.2010.68]