Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene

被引:18
作者
Clerico, V [1 ]
Delgado-Notario, J. A. [1 ]
Saiz-Bretin, M. [2 ]
Malyshev, A., V [2 ,3 ]
Meziani, Y. M. [1 ]
Hidalgo, P. [2 ]
Mendez, B. [2 ]
Amado, M. [1 ]
Dominguez-Adame, F. [2 ]
Diez, E. [1 ]
机构
[1] Univ Salamanca, USAL NANOLAB, Grp Nanotechnol, E-37008 Salamanca, Spain
[2] Univ Complutense, Dept Fis Mat, E-28040 Madrid, Spain
[3] Ioffe Phys Tech Inst, 26 Politechnicheskaya Str, St Petersburg 194021, Russia
关键词
D O I
10.1038/s41598-019-50098-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report on a novel implementation of the cryo-etching method, which enabled us to fabricate low-roughness hBN-encapsulated graphene nanoconstrictions with unprecedented control of the structure edges; the typical edge roughness is on the order of a few nanometers. We characterized the system by atomic force microscopy and used the measured parameters of the edge geometry in numerical simulations of the system conductance, which agree quantitatively with our low temperature transport measurements. The quality of our devices is confirmed by the observation of well defined quantized 2e(2)/h conductance steps at zero magnetic field. To the best of our knowledge, such an observation reports the clearest conductance quantization in physically etched graphene nanoconstrictions. The fabrication of such high quality systems and the scalability of the cryo-etching method opens a novel promising possibility of producing more complex truly-ballistic devices based on graphene.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Fabry-Perot resonances and a crossover to the quantum Hall regime in ballistic graphene quantum point contacts [J].
Ahmad, Nurul Fariha ;
Komatsu, Katsuyoshi ;
Iwasaki, Takuya ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Mizuta, Hiroshi ;
Wakayama, Yutaka ;
Hashim, Abdul Manaf ;
Morita, Yoshifumi ;
Moriyama, Satoshi ;
Nakaharai, Shu .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Localized charge carriers in graphene nanodevices [J].
Bischoff, D. ;
Varlet, A. ;
Simonet, P. ;
Eich, M. ;
Overweg, H. C. ;
Ihn, T. ;
Ensslin, K. .
APPLIED PHYSICS REVIEWS, 2015, 2 (03)
[3]   High-aspect-ratio nanoimprint process chains [J].
Cadarso, Victor J. ;
Chidambaram, Nachiappan ;
Jacot-Descombes, Loic ;
Schift, Helmut .
MICROSYSTEMS & NANOENGINEERING, 2017, 3
[4]   Conductance quantization suppression in the quantum Hall regime [J].
Caridad, Jose M. ;
Power, Stephen R. ;
Lotz, Mikkel R. ;
Shylau, Artsem A. ;
Thomsen, Joachim D. ;
Gammelgaard, Lene ;
Booth, Timothy J. ;
Jauho, Antti-Pekka ;
Boggild, Peter .
NATURE COMMUNICATIONS, 2018, 9
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Quantized Electron Transport Through Graphene Nanoconstrictions [J].
Clerico, Vito ;
Delgado-Notario, Juan A. ;
Saiz-Bretin, Marta ;
Hernandez Fuentevilla, Cristina ;
Malyshev, Andrey V. ;
Lejarreta, Juan D. ;
Diez, Enrique ;
Dominguez-Adame, Francisco .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (19)
[7]  
Datta S., 1995, Electronic transport in mesoscopic systems
[8]   Scalloping removal on DRIE via using low concentrated alkaline solutions at low temperature [J].
Defforge, Thomas ;
Song, Xi ;
Gautier, Gael ;
Tillocher, Thomas ;
Dussart, Remi ;
Kouassi, Sebastien ;
Tran-Van, Francois .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 170 (1-2) :114-120
[9]   TRANSITION FROM SHARVIN TO DRUDE RESISTANCE IN HIGH-MOBILITY WIRES [J].
DEJONG, MJM .
PHYSICAL REVIEW B, 1994, 49 (11) :7778-7781
[10]   From quantum confinement to quantum Hall effect in graphene nanostructures [J].
Guimaraes, M. H. D. ;
Shevtsov, O. ;
Waintal, X. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2012, 85 (07)