Community detection, link prediction, and layer interdependence in multilayer networks

被引:149
作者
De Bacco, Caterina [1 ]
Power, Eleanor A. [1 ]
Larremore, Daniel B. [1 ]
Moore, Cristopher [1 ]
机构
[1] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
基金
美国国家科学基金会;
关键词
MODELS;
D O I
10.1103/PhysRevE.95.042317
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
Airoldi EM, 2008, J MACH LEARN RES, V9, P1981
[2]   Efficient and principled method for detecting communities in networks [J].
Ball, Brian ;
Karrer, Brian ;
Newman, M. E. J. .
PHYSICAL REVIEW E, 2011, 84 (03)
[3]  
Bazzi M., ARXIV160806196
[4]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[5]  
Canny J., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P122, DOI 10.1145/1008992.1009016
[6]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[7]  
Cemgil Ali Taylan, 2009, Comput Intell Neurosci, P785152, DOI 10.1155/2009/785152
[8]   ON TENSORS, SPARSITY, AND NONNEGATIVE FACTORIZATIONS [J].
Chi, Eric C. ;
Kolda, Tamara G. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (04) :1272-1299
[9]   Hierarchical structure and the prediction of missing links in networks [J].
Clauset, Aaron ;
Moore, Cristopher ;
Newman, M. E. J. .
NATURE, 2008, 453 (7191) :98-101
[10]   The Genetic Landscape of a Cell [J].
Costanzo, Michael ;
Baryshnikova, Anastasia ;
Bellay, Jeremy ;
Kim, Yungil ;
Spear, Eric D. ;
Sevier, Carolyn S. ;
Ding, Huiming ;
Koh, Judice L. Y. ;
Toufighi, Kiana ;
Mostafavi, Sara ;
Prinz, Jeany ;
Onge, Robert P. St. ;
VanderSluis, Benjamin ;
Makhnevych, Taras ;
Vizeacoumar, Franco J. ;
Alizadeh, Solmaz ;
Bahr, Sondra ;
Brost, Renee L. ;
Chen, Yiqun ;
Cokol, Murat ;
Deshpande, Raamesh ;
Li, Zhijian ;
Lin, Zhen-Yuan ;
Liang, Wendy ;
Marback, Michaela ;
Paw, Jadine ;
Luis, Bryan-Joseph San ;
Shuteriqi, Ermira ;
Tong, Amy Hin Yan ;
van Dyk, Nydia ;
Wallace, Iain M. ;
Whitney, Joseph A. ;
Weirauch, Matthew T. ;
Zhong, Guoqing ;
Zhu, Hongwei ;
Houry, Walid A. ;
Brudno, Michael ;
Ragibizadeh, Sasan ;
Papp, Balazs ;
Pal, Csaba ;
Roth, Frederick P. ;
Giaever, Guri ;
Nislow, Corey ;
Troyanskaya, Olga G. ;
Bussey, Howard ;
Bader, Gary D. ;
Gingras, Anne-Claude ;
Morris, Quaid D. ;
Kim, Philip M. ;
Kaiser, Chris A. .
SCIENCE, 2010, 327 (5964) :425-431