Integrated Photonics Based on Rare-Earth Ion-Doped Thin-Film Lithium Niobate

被引:80
作者
Jia, Yuechen [1 ]
Wu, Jiangwei [2 ]
Sun, Xiaoli [1 ]
Yan, Xiongshuo [2 ]
Xie, Ranran [1 ]
Wang, Lei [1 ]
Chen, Yuping [2 ]
Chen, Feng [1 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Sch Phys, Jinan 2501001, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Phys & Astron, Inst Opt Sci & Technol, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
integrated photonics; lasers and amplifiers; rare-earth ion doping; thin-film lithium niobate; EFFICIENT 2ND-HARMONIC GENERATION; FREQUENCY COMB GENERATION; SOLID-STATE LASERS; WAVE-GUIDES; CRYSTAL; LINBO3; IMPLANTATION; SPECTROSCOPY; MANIPULATION; RESONATORS;
D O I
10.1002/lpor.202200059
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Rare-earth (RE) ion doped crystalline materials have a wide spectrum of applications in lasers, amplifiers, sensors, as well as classical and quantum information processing. The incorporation of RE ions into integrated photonics holds great promise for enriching the designer's toolbox with a view to addressing key performance features not available in existing photonic integration platforms. RE-ion-doped thin-film LiNbO3 (also called RE-ion-doped lithium-niobate-on-insulator, RE:LNOI), which inherits nearly all the material advantages as well as nanophotonic integration from the LNOI technology, meets the urgent demands for chip-integrated laser sources, optical amplifiers, and quantum memories based on LNOI photonics. In this article, a timely review is provided on the development of RE:LNOI photonics in terms of ion-doping techniques, chip-integrated lasers, and amplifiers, as well as low-temperature optical characterizations for quantum photonics. To conclude, some well-noted topics that may shape the future directions in lithium-niobate integrated photonics are discussed.
引用
收藏
页数:20
相关论文
共 195 条
[11]   Terahertz laser frequency combs [J].
Burghoff, David ;
Kao, Tsung-Yu ;
Han, Ningren ;
Chan, Chun Wang Ivan ;
Cai, Xiaowei ;
Yang, Yang ;
Hayton, Darren J. ;
Gao, Jian-Rong ;
Reno, John L. ;
Hu, Qing .
NATURE PHOTONICS, 2014, 8 (06) :462-467
[12]   OPTICAL AND ELECTRON-SPIN-RESONANCE SPECTRA OF YB3+ ND3+ AND CR3+ IN LINBO3 AND LITAO3 [J].
BURNS, G ;
OKANE, DF ;
TITLE, RS .
PHYSICAL REVIEW, 1968, 167 (02) :314-+
[13]   Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film [J].
Cai, Lutong ;
Kong, Ruirui ;
Wang, Yiwen ;
Hu, Hui .
OPTICS EXPRESS, 2015, 23 (22) :29211-29221
[14]   Low-loss waveguides in a single-crystal lithium niobate thin film [J].
Cai, Lutong ;
Wang, Yiwen ;
Hu, Hui .
OPTICS LETTERS, 2015, 40 (13) :3013-3016
[15]   Waveguides in single-crystal lithium niobate thin film by proton exchange [J].
Cai, Lutong ;
Han, Shuang Li Huangpu ;
Hu, Hui .
OPTICS EXPRESS, 2015, 23 (02) :1240-1248
[16]   Erbium-Doped Lithium Niobate Thin Film Waveguide Amplifier With 16 dB Internal Net Gain [J].
Cai, Minglu ;
Wu, Kan ;
Xiang, Junmin ;
Xiao, Zeyu ;
Li, Tieying ;
Li, Chao ;
Chen, Jianping .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (03)
[17]   Steering and Encoding the Polarization of the Second Harmonic in the Visible with a Monolithic LiNbO3 Metasurface [J].
Carletti, Luca ;
Zilli, Attilio ;
Moia, Fabio ;
Toma, Andrea ;
Finazzi, Marco ;
De Angelis, Costantino ;
Neshev, Dragomir N. ;
Celebrano, Michele .
ACS PHOTONICS, 2021, 8 (03) :731-737
[18]   Second harmonic generation in monolithic lithium niobate metasurfaces [J].
Carletti, Luca ;
Li, Cheng ;
Sautter, Juergen ;
Staude, Isabelle ;
De Angelis, Costantino ;
Li, Tao ;
Neshev, Dragomir N. .
OPTICS EXPRESS, 2019, 27 (23) :33390-33397
[19]   Subwavelength integrated photonics [J].
Cheben, Pavel ;
Halir, Robert ;
Schmid, Jens H. ;
Atwater, Harry A. ;
Smith, David R. .
NATURE, 2018, 560 (7720) :565-572
[20]   Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications [J].
Chen, Feng .
LASER & PHOTONICS REVIEWS, 2012, 6 (05) :622-640