FIXED POINT RESULTS FOR COMPARABLE KANNAN AND CHATTERJEA MAPPINGS

被引:0
作者
Khan, Qamrul H. [1 ]
Faruk, S. K. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Aligarh Muslim Univ Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
JOURNAL OF MATHEMATICAL ANALYSIS | 2021年 / 12卷 / 01期
关键词
Ordered metric space; Comparable mappings; TCC property; Termwise monotone sequence; <>-complete; <>-continuous; PARTIALLY ORDERED SETS; GENERALIZED CONTRACTIONS; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and uniqueness of fixed points for Kannan and Chatterjea type mappings using comparability of the mapping in ordered metric spaces where the contractivity condition needs to be hold only for those elements which are related by the underlying partial ordering. Moreover, need of conditions like completeness, continuity are weakened by <>-completeness, <>-continuity respectively. Further, we illustrate the importance of our results by giving an example.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 19 条
[1]   COMPARABLE LINEAR CONTRACTIONS IN ORDERED METRIC SPACES [J].
Alam, Aftab ;
Imdad, Mohammad .
FIXED POINT THEORY, 2017, 18 (02) :415-432
[2]   Comparable nonlinear contractions in ordered metric spaces [J].
Alam, Aftab ;
Khan, Qamrul Haq ;
Imdad, Mohammad .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04) :1652-1674
[3]   MONOTONE GENERALIZED CONTRACTIONS IN ORDERED METRIC SPACES [J].
Alam, Aftab ;
Imdad, Mohammad .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) :61-81
[4]  
Banach S., 1922, Fund. Math, V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
[5]  
CHATTERJEA SK, 1972, DOKL BOLG AKAD NAUK, V25, P727
[6]   A note on fixed point results without monotone property in partially ordered metric space [J].
Doric, Dragan ;
Kadelburg, Zoran ;
Radenovic, Stojan ;
Kumam, Poom .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) :503-510
[7]   Ordered topological spaces [J].
Eilenberg, S .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :39-45
[8]  
KANNAN R, 1968, BULL CALCUTTA MATH S, V60, P71
[9]  
Milgram A.N., 1940, REP MATH C, V2, P3